

DWDM SFP+ 10 Gbps, 40 km Optical Transceiver

SFP+ Series

- DWDM ITU (ch 17 to 61)
- Up to 11.3 Gbps data rate
- Up to 40 km transmission distance on SMF
- Metal enclosure
- Hot-pluggable SFP+ footprint
- Compliant with SFF 8431and SFF 8472
- 10GBASE-ER/EW
- 40 km 10 G Fibre Channel
- 10G Ethernet with FEC

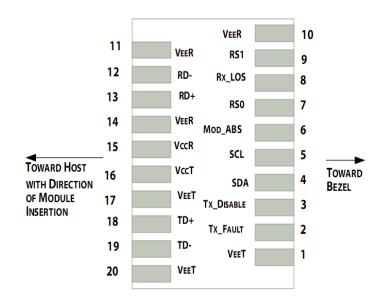
ASCENT DWDM ITU Channel SFP+ transceivers are designed for use in 10-Gigabit Ethernet links with distances up to 40 km over single-mode fiber. These transceivers include a PIN photo detector diode and temperature stabilized DFB-EML transmitter. Digital diagnostic functions are available via an I2C interface. This module is designed for single-mode fiber and operates at a nominal wavelength of 100 GHz ITU Grid, C Band DWDM wavelength.

ASCENT SFP+ transceivers provide a unique enhanced digital diagnostic monitoring interface which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags which alerts end users when particular operating parameters are outside of a factory set normal range.

ASCENT 10G DWDM SFP+ transceivers are compliant with SFF 8472 standards, and offer a convenient solution for 10GBASE-ER and 10GBASE-EW applications

Key Features -

- Up to 11.3 Gbps data rate
- Up to 40 km transmission distance on SMF
- DWDM EML laser and PIN receiver
- Metal enclosure, for lower EMI
- 2-wire interface with integrated Digital Diagnostic monitoring
- Hot-pluggable SFP+ footprint
- Compliant with SFF 8431 and SFF 8472
- Compliant with SFP+ MSA with LC connector
- Single 3.3 V power supply
- Case operating temperature range: -40 °C to +85 °C (industrial) 0 °C to +70°C (commercial)
- Power dissipation < 1.6 W


C-band λ_C Wavelength Guide Pin Descriptions

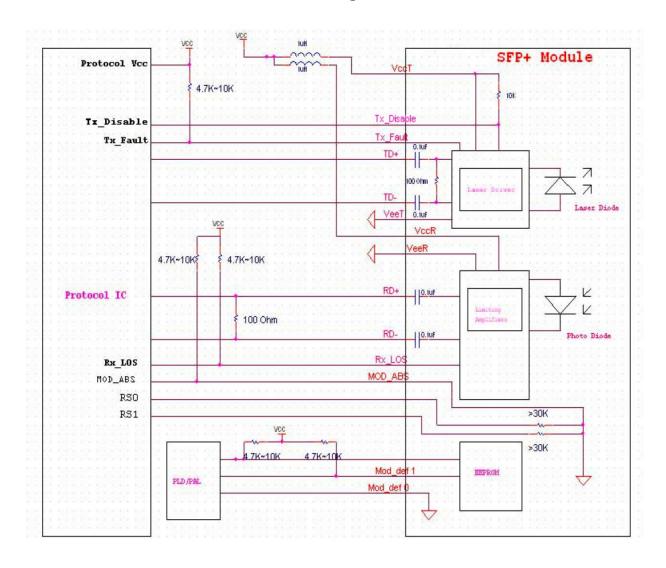
Channel	Wavelength (nm)	Frequency (THZ)	Channel	Wavelength (nm)	Frequency (THZ)
C17	1563.86	191.70	C39	1546.12	193.90
C18	1563.05	191.80	C40	1545.32	194.00
C19	1562.23	191.90	C41	1544.53	194.10
C20	1561.42	192.00	C42	1543.73	194.20
C21	1560.61	192.10	C43	1542.94	194.30
C22	1559.79	192.20	C44	1542.14	194.40
C23	1558.98	192.30	C45	1541.35	194.50
C24	1558.17	192.40	C46	1540.56	194.60
C25	1557.36	192.50	C47	1539.77	194.70
C26	1556.55	192.60	C48	1538.98	194.80
C27	1555.75	192.70	C49	1538.19	194.90
C28	1554.94	192.80	C50	1537.4	195.00
C29	1554.13	192.90	C51	1536.61	195.10
C30	1553.33	193.00	C52	1535.82	195.20
C31	1552.52	193.10	C53	1535.04	195.30
C32	1551.72	193.20	C54	1534.25	195.40
C33	1550.92	193.30	C55	1533.47	195.50
C34	1550.12	193.40	C56	1532.68	195.60
C35	1549.32	193.50	C57	1531.9	195.70
C36	1548.51	193.60	C58	1531.12	195.80

	1563 86 nm				
Non-ITU	Peak wavelength be	tween 1528.77 nm to	C61	1528.77	196.10
C38	1546.92	193.80	C60	1529.55	196.00
C37	1547.72	193.70	C59	1530.33	195.90

Pin Assignment •

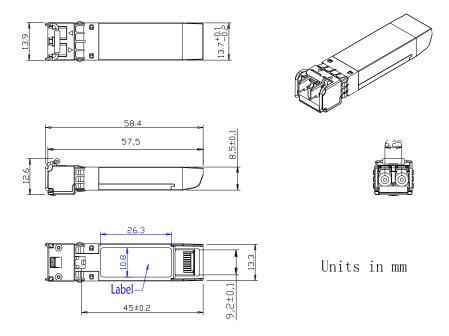
Pin	Symbol	Name/Description	NOTE
1	$V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	1
10	$V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
11	$V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	$V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	$V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	$V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1

Notes:


- 1. Circuit ground is internally isolated from chassis ground.
- 2. TFAULT is an open collector/drain output, which should be pulled up with a 4.7 k Ω to 10 k Ω resistor on the host board if intended for use. Pull up voltage should be between 2.0 V to Vcc + 0.3 V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on TDIS > 2.0 V or open, enabled on TDIS < 0.8 V.
- 4. Should be pulled up with 4.7 k Ω to 10 k Ω host board to a voltage between 2.0 V and 3.6 V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with 4.7 k Ω to 10 k Ω on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Regulatory Compliance

Feature	Reference	Performance
Electrostatic Discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 550222	Compatible with standards
	Class B (CISPR 22a)	
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11	Class 1 laser product
	IEC/EN 60825-1, 2	
Component Recognition	IEC/EN 60950, UL	Compatible with standards
RoHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards



Host - Transceiver Interface Block Diagram

Outline Dimensions

Digital Diagnostic Functions

ASCENT SFPP-ATLP-DXX-40A transceivers support the 2-wire serial communication protocol as defined in the SFP+ MSA.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, ASCENT SFP+ transceivers provide a unique enhanced digital diagnostic monitoring interface which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags which alerts end users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8-bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8-bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bidirectional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Specifications -

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	5		95	%	
Power Supply Voltage	Vcc	-0.3		4.0	V	
Signal Input Voltage		Vcc - 0.3		Vcc + 0.3	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Case Operating Temperature	T_{case}	0		70	°C	SFPP-ATLP-DXX-40
		-40		85	°C	SFPP-ATLP-DXX-40A
Power Supply Voltage	V_{CC}	3.14	3.3	3.47	V	
Data Rate	BR		10.3125		Gbps	
Transmission Distance	TD			40	km	
Coupled Fiber	Single-mo	ode fiber				9/125 μm SMF

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Average Optical Power	Pout	-1		+3	dBm	1
Optical Extinction Ratio	ER	8.2			dB	
Center Wavelength	λc	λc - 0.1		λc + 0.1	nm	2
Center Wavelength Spacing			100		GHz	2
Spectrum Bandwidth (-20 dB)	σ			1.0	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Launch Power (Laser Off)	Poff			-30	dBm	
Transmitter and Dispersion Penalty	TDP			2.0	dB	
Output Eye Mask	Compliant	with IEE 80	2.3ae			
Receiver						
Input Optical Wavelength	λc	1270		1610	nm	
Receiver Sensitivity	P_{sen}			-16.0	dBm	3
Input Saturation Power (Overload)	\mathbf{P}_{sat}	0			dBm	
LOS Assert	LOSA	-28			dBm	
LOS De-assert	LOSD			-19	dBm	
LOS Detect Hysteresis	P_{hys}	0.5			dB	

Notes

- 1. Launched power (avg.) is power coupled into a single-mode fiber with master connector. (Before of Life)
- $2.\,\lambda C$ refer to wavelength selection, and corresponds to approximately 0.8 nm.
- 3. Measured with conformance test signal for BER = 10-12.@10.3125 Gbps, PRBS= 2^31-1 , NRZ, optical source with worst ER, wavelength between 1528.77 nm and 1563.86 nm; back to back.

Electrical Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Supply Voltage	V_{CC}	3.14	3.3	3.46	V	
Supply Current ¹	Icc			400	mA	SFPP-ATLP-DXX-40
				460	mA	SFPP-ATLP-DXX-40A
Transmitter						
Input Differential Impedance	R _{IN}		100		Ω	2
Single-ended Data Input Swing	V _{IN} -pp	180		700	mV	
Transmit Disable Voltage	V_{DIS}	2.0		Vcc	٧	3
Transmit Enable Voltage	V_{EN}	Vee		Vee+ 0.8	V	
Transmit Disable Assert Time				10	μs	
Receiver						
Differential Data Output Swing	V _{оит} -рр	400		800	mV	4
Data Output Rise Time	tr	28			ps	5
Data Output Fall Time	tf	28			ps	5
LOS Output High Level	$V_{\text{LOS-H}}$	2.0		V_{CCHOST}	٧	6
LOS Output Low Level	$V_{\text{LOS-L}}$	Vee		Vee+0.8	V	6
Power Supply Rejection	PSR	100			mV_{PP}	7

Notes:

- 1. Measured with receive Pin = Psen, Vcc = 3.3V, operation temperature range, without air flow
- 2. Connected directly to TX data input pins. AC coupled.
- 3. Or open circuit.
- 4. Into 100 ohms differential termination.
- 5. 20 80 %.
- 6. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 7. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

Ordering Information

Item Description

SFPP-ATLP-DXX-40 SFP+ Plug-in, 10 Gbps, 40 km, TX=ITU Ch xx (17 to 61) /RX wide, on two single-

mode fibers, LC/PC Blue

SFPP-ATLP-DXX-40A SFP+ Plug-in, 10 Gbps, 40 km, TX=ITU Ch xx (17 to 61) /RX wide, on two single

mode fibers, LC/PC Blue, Industry Temp

Contact Information

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246 **HONG KONG SAR**

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, HONG KONG Phone: +852-2851 4722

.....

USA

2710 Thomes Ave, Cheyenne WY 82001, USA

Phone: +1-203 816 5188

VIETNAM

15 /F TTC Building, Duy Tan Street, Cau Giay

Hanoi, VIETNAM

Phone: +84 243 795 5917

WEB: <u>www.ascentcomtec.com</u> EMAIL: <u>sales@ascentcomtec.com</u>

Specifications and product availability are subject to change without notice. Copyright © 2019 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_SFPP-ATLP-DXX-40_Datasheet_V1c_Jul_2019