

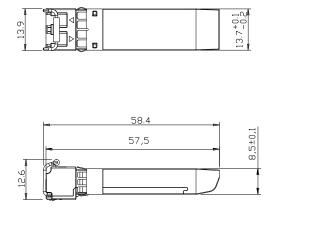
10 Gb/s Single-Mode CWDM SFP+ 40 km Transceiver

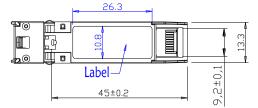
SFP+ Series

- 1270 nm to 1610 nm
- Up to 11.3 Gbps data rate
- Up to 40 km transmission distance
- Metal enclosure for lower
 EMI
- Hot-pluggable SFP+ footprint
- Compliant with SFF 8472
- Low power dissipation
- Digital diagnostic monitoring
- RoHS compliant

ASCENT's CWDM SFP+ transceivers are designed for use in 10-Gigabit Ethernet links with distances up to 80 km over single-mode fiber. These transceivers include a a PIN photo detector diode and uncooled CWDM DFB laser transmitter (1260 nm to 1370 nm) or an APD receiver and CWDM EML transmitter (1470 nm to 1610 nm). Digital diagnostic functions are available via an I2C interface. This module is designed for single-mode fiber and operates at wavelengths between 1270 nm to 1610 nm.

ASCENT SFP+ transceivers provide a unique enhanced digital diagnostic monitoring interface which allows realtime access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags which alerts end users when particular operating parameters are outside of a factory set normal range.

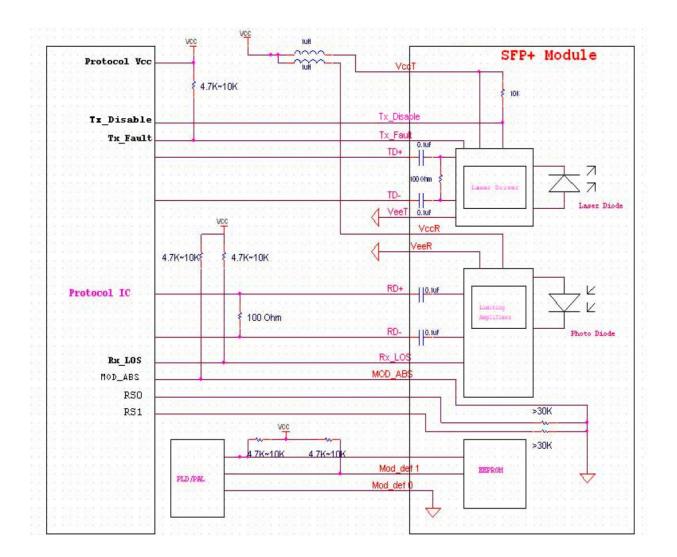

ASCENT's 10G CWDM SFP+ transceivers are compliant with SFF 8472 standards, and offer a convenient solution for 10GBASE-LR/LW, 10G SONET/SDH, and OTU2/2e applications.



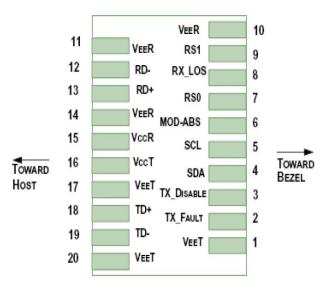
Key Features -

- Up to 11.3 Gbps Data Links
- Up to 40 km transmission on SMF
- Uncooled CWDM DFB Laser and PIN receiver (1270 nm to 1370 nm)
- CWDM EML transmitter and PIN receiver (1470 nm to 1610 nm)
- Metal enclosure for lower EMI
- 2-wire interface with integrated Digital Diagnostic monitoring
- Hot-pluggable SFP+ footprint
- Specifications compliant with SFF 8472
- Compliant with SFP+ MSA with LC connector
- Single 3.3 V power supply
- Commercial/Industrial case operating temperature range: 0 °C to +70 °C / -40 °C to +85 °C
- Without CDR (standard) or with CDR supported 9.95 Gb/s to 11.3Gb/s reference-free

Outline Dimensions



Units in mm



Host - Transceiver Interface Block Diagram

Pin Assignment

Pin	Symbol	Name/Description	Note
1	V _{eet}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	No connection	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	Internally connect to circuit ground	
10	V	Receiver Ground (Common with Transmitter Ground)	1
11	V	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	$V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{cct}	Transmitter Power Supply	
17	V	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an LVTTL output. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power or the laser temperature exceeding the preset alarm thresholds. A low output

indicates normal operation. In the low state, the output is pulled to <0.8 V. Laser output disabled on $T_{_{DIS}}$

> 2.0 V or open, enabled on T_{DIS} < 0.8 V.

- 3. Laser output disabled on $T_{DIS} > 2.0$ V or open, enabled on $T_{DIS} < 0.8$ V.
- 4. Should be pulled up with 4.7 k Ω to 10 k Ω on host board to a typical 3.3 V voltage. MOD_ABS pulls line low to indicate module is plugged in.
- 5. LOS is open collector output. It should be pulled up with 4.7 k Ω to 10 k Ω on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Digital Diagnostic Functions –

ASCENT SFPP-ATLP-CXX-40 transceivers support the 2-wire serial communication protocol as defined in the SFP+ MSA.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, ASCENT SFP+ transceivers provide a unique enhanced digital diagnostic monitoring interface which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags which alerts end users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8-bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8-bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bidirectional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Specifications -

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Storage Temperature	Ts	-40	-	85	°C	
Relative Humidity	RH	5	-	95	%	
Power Supply Voltage	VCC	-0.3	-	4	V	
Signal Input Voltage		Vcc-0.3	-	Vcc+0.3	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Temperature	Tcase	0	-	70	°C	Commercial
		-40	-	85	°C	Industrial
Power Supply Voltage	VCC	3.14	3.3	3.47	V	
Power Supply Current	ICC	-		450	mA	
Data Rate	BR		10.3125	11.3	Gbps	
Transmission Distance	TD		-	40	km	
Coupled fiber	Single-mo	ode fiber				9/125 µm SMF

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitter						
Average Launched Power (1270 nm to 1370 nm)	Роит	0		5	dBm	1
Average Launched Power (1470 nm to 1610 nm)	Роит	-1		3	dBm	2
Extinction Ratio (1270 nm to 1370 nm)	ER	3.5			dB	
Extinction Ratio (1470 nm to 1610 nm)	ER	8.2			dB	
Center Wavelength	λc	λc-6.5		λc+6.5	nm	3
Spectral Width (-20dB)	σ			1.0	nm	
SMSR		30			dB	
Transmitter OFF Output Power (1470 nm to 1610	Poff			-30	dBm	
nm)						
Transmitter and Dispersion Penalty (1470 nm to	TDP			2.0	dB	
1610 nm)						
Output Eye Mask		Compliar	nt with IEE	E 802.3ae		
Receiver						
Input Optical Wavelength	λ	1270		1610	nm	
Receiver Sensitivity (1270 nm to 1370 nm)	Psen			-15	dBm	4
Receiver Sensitivity (1470 nm to 1610 nm)				-16		5
Input Saturation Power (Overload) (1270 nm to	Psat	0.5			dBm	
1370 nm)						

10 Gb/s CWDM SFP+ 40 km Transceiver

Input Saturation Power (Overload) (1470 nm to	Psat	0		dBm
1610 nm)				
LOS Assert (1270 nm to 1370 nm)	LOSA	-30		dBm
LOS Assert (1470 nm to 1610 nm)	LOSA	-35		dBm
LOS De-Assert (1270 nm to 1370 nm)	LOSD		-17	dBm
LOS De-Assert (1470 nm to 1610 nm)	LOSD		-26	dBm
LOS Detect Hysteresis	PHys	0.5		dB

Notes:

1. 1. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.

2. Launched power (avg.) is power coupled into a single-mode fiber with master connector. (Before of Life)

3. For λc refer to wavelength selection

4. Measured with a PRBS 2^{31} -1 test pattern, @ 10.325 Gb/s, BER<10⁻¹².

5. Measured with conformance test signal for BER = 10^{-12} @ 10.3125 Gbps, PRBS = 2^{31} -1, NRZ, Optical source with worst ER, Wavelength between 1470 nm and 1610 nm; back to back.

Parameter	Symbol	Min	Тур.	Max	Unit	Note
Supply Voltage	Vcc	3.14	3.3	3.46	V	
Supply Current (Note 1)	lcc			450	mA	1270 nm to 1370
						nm
				400	mA	1470 nm to 1610
						nm
				460	mA	1470 nm to 1610
						nm (industrial)
				430	mA	1470 nm to 1610
						nm with CDR
				490	mA	1470 nm to 1610
						nm (industrial) with
						CDR
Transmitter						
Input Differential Impedance	Rin		100		Ω	2
Differential Data Input Swing	Vin, pp	180		1200	mV	
(1270 nm to 1370 nm)						
Differential Data Input Swing	Vin, pp	180		700	mV	
(1470 nm to 1610 nm)						
Transmit Disable Voltage (1270	V _{Dis}	Vcc-1.3		Vcc	V	
nm to 1370 nm)						
Transmit Disable Voltage (1470	V _{Dis}	2.0		Vcc	V	
nm to 1610 nm)						
Transmit Enable Voltage	VEN	Vee		Vee+ 0.8	V	3
Transmit Disable Assert Time				10	μs	
Receiver						

Electrical Characteristics

10 Gb/s CWDM SFP+ 40 km Transceiver

Differential Data Output Swing	Vout, pp	300	850	mV	4
(1270 nm to 1370 nm) Differential Data Output Swing (1470 nm to 1610 nm)	Vout, pp	400	800	mV	4
Data Output Rise Time (1270 nm to 1370 nm)	tr	30		ps	5
Data Output Rise Time (1470 nm to 1610 nm)	tr	30		ps	5
Data Output Fall Time (1270 nm to 1370 nm)	tf	28		ps	5
Data Output Fall Time (1470 nm to 1610 nm)	tf	28		ps	5
LOS Fault (1270 nm to 1370 nm)	$V_{LOS_{fault}}$	Vcc-1.3	Vссноят	V	6
LOS Output High Level (1470 nm to 1610 nm)	V _{LOS-H}	2.0	Vссноят	V	6
LOS Normal (1270 nm to 1370 nm)	V_{LOS_norm}	Vee	Vee+0.8	V	6
LOS Output Low Level (1470 nm to 1610 nm)	V _{LOS-L}	Vee	Vee+0.8	V	6

Notes:

1. Measured with receive Pin = Psen, Vcc = 3.3 V, operation temperature range, without air flow.

- 2. Connected directly to TX data input pins. AC coupled.
- 3. Or open circuit.
- 4. Input 100 Ω differential termination.
- 5. These are unfiltered 20 % to 80 % values.
- 6. Loss Of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

Regulatory Compliance

Feature	Reference	Performance
Electrostatic Discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 550222	Compatible with standards
	Class B (CISPR 22a)	
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11	Class 1 laser product
	IEC/EN 60825-1, 2	
Component Recognition	IEC/EN 60950, UL	Compatible with standards
RoHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards

Ordering Information -

Product part Number	Media	Wavelength (nm)	Transmission Distance	Temperature Range (Tcase)	With/Without CDR
SFPP-ATLP-CXX-40	Single- mode fiber	Refer to wavelength selection	40 km	0 °C to +70 °C	Without CDR
SFPP-ATLP-CXX-40A	Single- mode fiber	Refer to wavelength selection	40 km	-40 °C to +85 °C	Without CDR
SFPP-ATLP-CXX-40C	Single- mode fiber	Refer to wavelength selection	40 km	0 °C to +70 °C	With CDR
SFPP-ATLP-CXX- 40CA	Single- mode fiber	Refer to wavelength selection	40 km	-40 °C to +85 °C	With CDR

Note: Max. Transmission Distance is 70 km for input wavelength 1570 nm, 1590 nm, and 1610 nm

Product Name	Product Description
SFPP-ATLP-CXX-40	SFP+ Plug-in, 10Gbps, 40km, TX=CWDM Ch xx (1270 nm to 1610 nm) /RX wide,
	on two single mode fibers, LC/PC Blue

Wavelength	XX	Clasp Color Code	Wavelength	XX	Clasp Color Code
1270 nm	27	Gray	1330 nm	33	Purple
1290 nm	29	Gray	1350 nm	35	Blue
1310 nm	31	Gray	1370 nm	37	Green
1470 nm	47	Gray	1550 nm	55	Yellow
1490 nm	49	Purple	1570 nm	57	Orange
1510 nm	51	Blue	1590 nm	59	Red
1530 nm	53	Green	1610 nm	61	Brown

Contact Information

Ascent Communication Technology Ltd

AUSTRALIA 140 William Street, Melbourne

Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA Unit 1933, 600 Luban Road 200023, Shanghai CHINA Phone: +86-21-60232616

EUROPE Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

WEB: www.ascentcomtec.com

HONG KONG SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, HONG KONG Phone: +852-2851 4722

USA

2710 Thomes Ave Cheyenne, WY 82001, USA Phone: +1-203 816 5188

VIETNAM

15 /F TTC Building, Duy Tan Street Cau Giay Dist., Hanoi, VIETNAM Phone: +84 243 795 5917

EMAIL: sales@ascentcomtec.com

Specifications and product availability are subject to change without notice. Copyright © 2020 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_SFPP-ATLP-CXX-40_Datasheet_V1b_Apr_2020