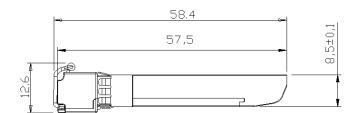


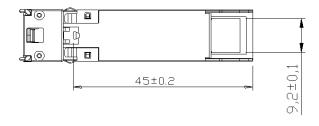
SFPP-ATLP-31-02 10Gb/s 1310nm SFP+ 2km Transceiver

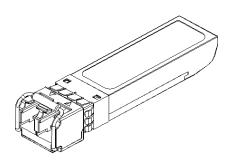
- Up to 11.1Gbps Data Links
- Up to 2km transmission on SMF
- FP Laser and PIN receiver
- Metal enclosure, for lower EMI
- 2-wire interface with integrated
 Digital Diagnostic monitoring
- Specifications compliant with SFF 8472
- Compliant with SFP+ MSA with LC connector
- Single 3.3V power supply
- Power dissipation < 1.2W</p>

ASCENT'S SFPP-ATLP-31-02 Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the 1310nm FP laser and the PIN photo-detector .The module data link up to 2KM in 9/125um single mode fiber.

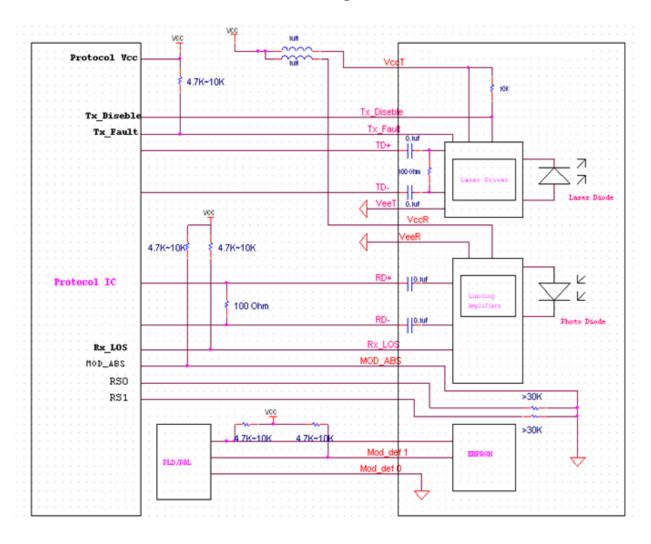
The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.



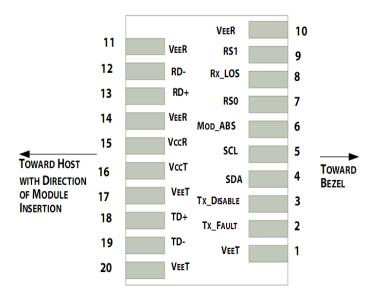

Key Features—


- 10GBASE-LR/LW & 10G Ethernet
- Compliant to 802.3ae 10GBASE-LR/LW
- Compliant to SFF-8431
- RoHS Compliant.

Outline Dimensions-



Units in mm



Host - Transceiver Interface Block Diagram

Pin Assignments-

Pin out of Connector Block on Host Board

Pin	Symbol	Name/Description	NOTE
1	$V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	1
10	$V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
11	$V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	$V_{_{EER}}$	Receiver Ground (Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	$V_{_{EET}}$	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on

the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V.A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.

- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. Should be pulled up with $4.7k\Omega$ $10k\Omega$ host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Specifications ·

SFPP-ATLP-31-02 SFPP Transceiver

Parameter	Symbol	Value	Notes		
Absolute Maximum Ratings					
Storage Temperature	Ts	-40 °C to +85 °C			
Relative Humidity	RH	5 % to 95 %			
Power Supply Voltage	Vcc	-0.3 V to +4 V			
Recommended Operating Conditions					
Case Operating Temperature	Tcase	0 °C to +70 °C	Commercial		
		-40 °C to 85 °C	Industrial		
Power Supply Voltage	Vcc	3.14 V to 3.47 V, 3.3 V typical			
Power Supply Current	Icc	360 mA maximum			
Data Rate	BR	10.3125 Gbps			
Transmission Distance	TD	2 km			
Coupled Fiber	Single-m	ode fiber	9/125 μm SMF		

Optical Characteristics

Parameter Transmitter	Symbol	Min	Тур	Max	Unit	Note
Output Opt. Power Optical Wavelength Spectral Width (RMS) Optical Extinction Ratio Output Eye Mask	POUT λ σ ER Compliant w	-6 1260 3.5 vith IEEE 802.3	1310 Bae	-0.5 1355 3	dBm nm nm dB	1
Receiver Rx Sensitivity Input Saturation Power (Overload) Wavelength Range LOS De -Assert LOS Assert LOS Hysteresis	PSEN Psat λC LOSD LOSA	0.5 1270 -30 0.5	1.0	-14.4 1610 -17	dBm dBm nm dBm dBm dB	2

Notes:

- 1. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 2. Measured with a PRBS 2^{31} -1 test pattern, @10.3125Gb/s, BER<10⁻¹².

Electrical Characteristics

Parameter Supply Voltage Supply Current	Symbol Vcc Icc	Min 3.14	Typ 3.3	Max 3.46 360	Unit V mA	Note
Transmitter Input differential impedance Differential data input swing Transmit Disable Voltage	Rin Vin,pp VD	180 Vcc–1.3	100	1200 Vcc	Ω mV V	1
Transmit Enable Voltage Transmit Disable Assert Time Receiver	VEN	Vee		Vee+ 0.8 10	V us	2
Differential data output swing Data output rise time Data output fall time LOS Fault LOS Normal Power Supply Rejection	Vout,pp tr tf VLOS fault VLOS norm PSR	300 30 30 Vcc–1.3 Vee 100		VccHOST Vee+0.8	mV ps ps V V mVpp	3 4 4 5 5
Tower Supply Rejection	1 311	100			iii v pp	J

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Input 100 ohms differential termination.
- 4. These are unfiltered 20-80% values
- 5. Loss of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

Digital Diagnostic Functions —

ASCENT's SFPP-ATLP-31-02 transceivers support the 2-wire serial communication protocol as defined in the SFP+ MSA. The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, ASCENT SFP+ transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, receiver optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

	Regulatory Compliance							
	regulatory compliance							
Feature		Reference	Performance					
	Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards					
	Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class	Compatible with standards					
		B (CISPR 22A)						
	Laser Eye Safety	FDA 21CFR 1040.10, 1040.11	Class 1 laser product					
		IEC/EN 60825-1, 2						
	Component Recognition	IEC/EN 60950, UL	Compatible with standards					
	ROHS	2002/95/EC	Compatible with standards					
	EMC	EN61000-3	Compatible with standards					

Ordering Information-

Part Number Product Description

SFPP-ATLP-31-02 SFP+ Plug-in, 10Gbps, 2km, TX=1310/RX wide, on two single-mode fibers, LC/PC Blue SFPP-ATLP-31-02A SFP+ Plug-in, 10Gbps, 2km, TX=1310/RX wide, on two multimode fibers, LC/PC Blue,

Industrial Temp

Contact Information-

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

HONG KONG SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, HONG KONG Phone: +852-2851 4722

USA

2710 Thomes Ave, Cheyenne WY 82001, USA Phone: +1-203 816 5188

VIETNAM

15 /F TTC Building, Duy Tan Street, Cau Giay Hanoi, VIETNAM Phone: +84 168 481 8348

WEB: www.ascentcomtec.com EMAIL: sales@ascentcomtec.com

Specifications and product availability are subject to change without notice. Copyright © 2016 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_SFPP-ATLP-31-02_Datasheet_V1b_Aug_2016