

SFPP-AT-LP-XXXX-60D 10 Gb/s BIDI SFP+ 60 km Transceiver

- Up to 11.1 Gbps data links
- Up to 60 km transmission on SMF
- Power dissipation < 1.5W</p>
- 1270 nm DFB laser and APD receiver for SFPP-AT-LP-2733-60D
 1330 nm DFB laser and APD receiver for SFPP-AT-LP-3327-60D
- 2-wire interface with integrated Digital
 Diagnostics Monitoring
- EEPROM with serial ID functionality
- Hot-pluggable SFP+ footprint
- Compliant with SFP+ MSA with LC connector
- Single + 3.3V power supply
- Case operating temperature: 0 ~ 70°C

SFPP-AT-LP-XXXX-60D is a hot pluggable 3.3V small form-factor pluggable transceiver module. It is designed expressly for high-speed communication applications that require rates up to 11.1 Gb/s, and is compliant with SFF-8472 SFP+ MSA. The module data link can handle distances up to 60 km with a 9/125 μm single-mode fiber.

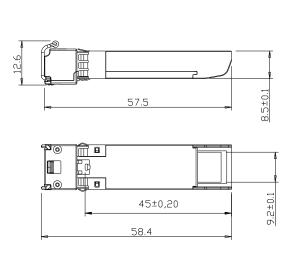
ASCENT SFPP-AT-LP-XXXX-60D transceivers support the 2-wire serial communication protocol defined in the SFP+MSA.

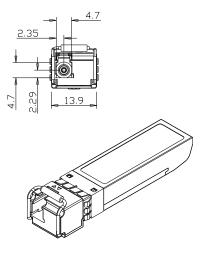
The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

ASCENT SFP+ transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage. It also defines a sophisticated system of alarms and warning flags, which can alert end-users when particular operating parameters are outside of a factory set normal range.

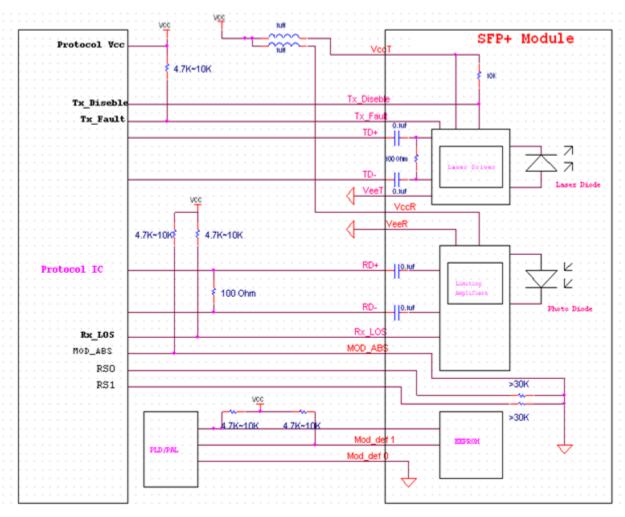
The SFP+ MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8-bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

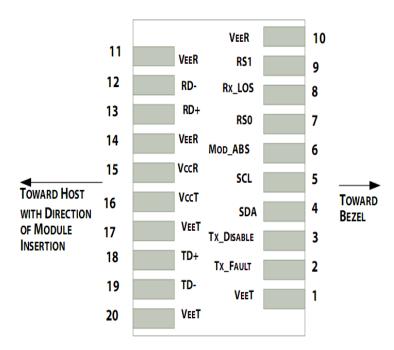
Operational and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver in the segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.


Key Features—


- Applicable for 10GBASE-BX networks
- Compliant with SFF-8472
- Compliant with SFF-8431
- RoHS compliant

Outline Dimensions-


Units in mm



Recommended Interface Circuit-

Pin Descriptions-

Pin Out of Connector Block on Host Board

Pin	Symbol	Name/Description	NOTE
1	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	1
10	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1

18 TD+ Transmitter Non-Inverted DATA in. AC Coupled.

19 TD- Transmitter Inverted DATA in. AC Coupled.

20 V_{EET} Transmitter Ground (Common with Receiver Ground) 1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a $4.7k\Omega 10 \ k\Omega$ resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V.A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. Should be pulled up with $4.7k\Omega$ $10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is open collector output. It should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Specifications—

opecinications							
Parameter	Symbol	Value	Notes				
Absolute Maximum Ratings							
Storage Temperature	Ts	-40 ~ 85°C					
Relative Humidity	RH	5 ~ 95%					
Power Supply Voltage	VCC	-0.3 ~ 4V					
Signal Input Voltage		Vcc – 0.3 ~ Vcc + 0.3					
Recommended Operating Conditions	;						
Case Operating Temperature	Tcase	-5 ~ 70°C	Without air flow				
Power Supply Voltage	VCC	3.14 ~ 3.47V, 3.3V typical					
Power Supply Current	ICC	450 mA maximum					
Data Rate	BR	10.3125 Gbps					
Transmission Distance	TD	60 km					
Coupled Fiber	Single-mode fiber		9/125 μm SMF				
Optical Characteristics							
Transmitter							
Average Launched Power	PO	0 ~ 5 dBm					
Average Launched Power(Laser Off)	Poff	-30 dBm maximum	Note (1)				
Center Wavelength Range	λC	1260 ~ 1280 nm, 1270 nm typical	SFPP-AT-LP-2733-60D				
		1320 ~ 1340 nm, 1330 nm typical	SFPP-AT-LP-3327-60D				
Side Mode Suppression Ratio	SMSR	30 dB minimum					
Spectrum Bandwidth (-20 dB)	σ	1 nm maximum					
Extinction Ratio	ER	3.5 dB minimum	Note (2)				
Output Eye Mask	Complian	t with IEEE 802.3ae	Note (2)				
Receiver							
Input Optical Wavelength	λΙΝ	1320 ~ 1340 nm, 1330 nm typical	SFPP-AT-LP-2733-60D				
		1260 ~ 1280 nm, 1270 nm typical	SFPP-AT-LP-3327-60D				
Receiver Sensitivity	Psen	-20 dBm maximum	Note (3)				
Input Saturation Power (Overload)	PSAT	-6 dBm minimum	Note (3)				
LOS -Assert Power	PA	-35 dBm minimum					
LOS -Deassert Power	PD	-21 dBm maximum					
LOS -Hysteresis	PHys	0.5 ~ 5 dB					
Electrical Interface Characteristics							
Total power supply current	Icc	450 mA maximum					
Transmitter							
Differential Data Input Voltage	VDT	180 ~ 700 mVp-p					
Differential line input Impedance	RIN	85 $^{\sim}$ 115 Ω, 100 Ω typical					
Transmitter Fault Output-High	VFaultH	2.4V ~ Vcc					
Transmitter Fault Output-Low	VFaultL	-0.3 ~ 0.8V					
Transmitter Disable Voltage- High	VDisH	2V ~ Vcc + 0.3					
Transmitter Disable Voltage- low	VDisL	-0.3 ~ +0.8V					
Receiver							
Differential Data Output Voltage	VDR	300 ~ 850 mVp-p					
Differential line Output Impedance	ROUT	$80 \sim 120 \Omega$, 100Ω typical					
Receiver LOS Pull up Resistor	RLOS	4.7 ~ 10 kΩ					
Data Output Rise/Fall time	tr/tf	38 ps maximum					
LOS Output Voltage-High	VLOSH	2V ~ Vcc					
LOS Output Voltage-Low	VLOSL	-0.3 ~ +0.4V					

Notes:

- 1. The optical power is launched into SMF
- 2. Measured with RPBS 2^31-1 test pattern @10.3125 Gbs
- 3. Measured with RPBS 2^31-1 test pattern @10.3125 Gbs BER=<10^-12

Regulatory Compliance

Feature	Reference	Performance
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class B (CISPR 22A)	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11 IEC/EN 60825-1, 2	Class 1 laser product
Component Recognition	IEC/EN 60950, UL	Compatible with standards
ROHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards

Ordering Information

Product Part Number	Data Rate (Gbps)	Media	Wavelength (nm)	Transmission Distance (km)	Temperature (T _{case}) (°C)	e Range
SFPP-AT-LP-2733-60D	10.3125	Single- mode fiber	1270/1330	60	-5 ~ 70	Commercial
SFPP-AT-LP-3327-60D	10.3125	Single- mode fiber	1330/1270	60	-5 ~ 70	Commercial

Contact Information-

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

HONG KONG SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, HONG KONG Phone: +852-2851 4722

USA

2710 Thomes Ave, Cheyenne WY 82001, USA Phone: +1-203 816 5188

VIETNAM

15 /F TTC Building, Duy Tan Street, Cau Giay Hanoi, VIETNAM Phone: +84 243 795 5917

WEB: www.ascentcomtec.com EMAIL: sales@ascentcomtec.com

Specifications and product availability are subject to change without notice. Copyright © 2016 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_SFPP-AT-LP-XXXX-60D_Datasheet_V1a_Jun_2016