

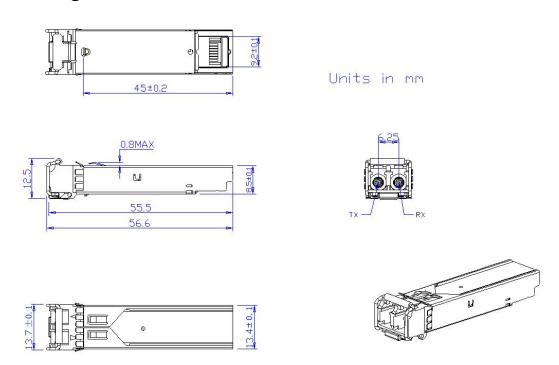
# SFP-AGLP-51-120 1.25Gb/s 1550nm Single-mode SFP Transceiver

### **SFP Series**

- Up to 1.25Gb/s data links
- DFB laser transmitter and APD receiver
- Up to 120km on 9/125μm SMF
- Hot-pluggable SFP footprint
- Duplex LC/UPC type pluggable optical interface
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS compliant and lead-free
- Single +3.3V power supply
- Compliant with SFF-8472



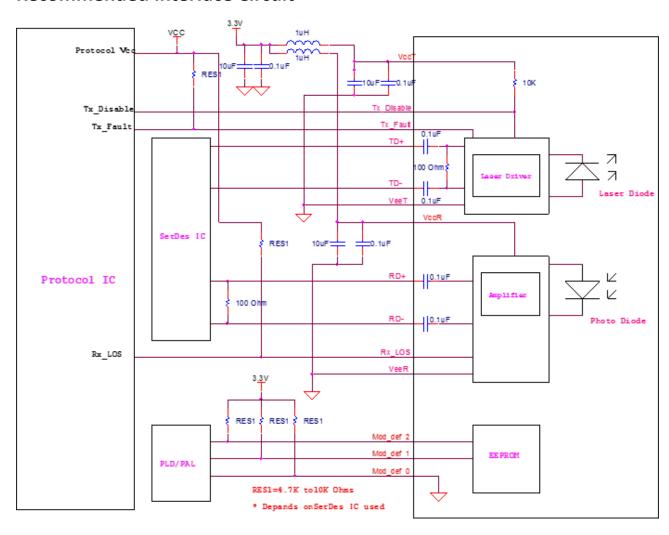
ASCENT's SFP-AGLP-51-120 Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the DFB laser and the APD .The module data link up to 120 km in 9/125  $\mu m$  single mode fiber.


The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access



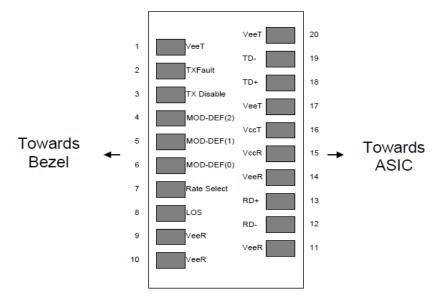
### **Key Features -**

- Up to 1.25 Gb/s data links
- DFB laser transmitter and APD receiver
- Up to 120km on 9/125 μm SMF
- Hot-pluggable SFP footprint
- Duplex LC/UPC type pluggable optical interface
- Low power dissipation
- Metal enclosure, for lower EMI
- RoHS compliant and lead-free
- Single +3.3V power supply
- Compliant with SFF-8472


### **Outline Diagram**



SFP-AGLP-51-120




### **Recommended Interface Circuit**





### **Pin Description -**



### Pin out of Connector Block on Host Board

| Pin | Symbol           | Name/Description                                               | Note |
|-----|------------------|----------------------------------------------------------------|------|
| 1   | $V_{EET}$        | Transmitter Ground (Common with Receiver Ground)               | 1    |
| 2   | TFAULT           | Transmitter Fault.                                             |      |
| 3   | T <sub>DIS</sub> | Transmitter Disable. Laser output disabled on high or open.    | 2    |
| 4   | MOD_DEF(2)       | Module Definition 2. Data line for Serial ID.                  | 3    |
| 5   | MOD_DEF(1)       | Module Definition 1. Clock line for Serial ID.                 | 3    |
| 6   | MOD_DEF(0)       | Module Definition 0. Grounded within the module.               | 3    |
| 7   | Rate Select      | No connection required                                         | 4    |
| 8   | LOS              | Loss of Signal indication. Logic 0 indicates normal operation. | 5    |
| 9   | $V_{EER}$        | Receiver Ground (Common with Transmitter Ground)               | 1    |
| 10  | $V_{EER}$        | Receiver Ground (Common with Transmitter Ground)               | 1    |
| 11  | $V_{EER}$        | Receiver Ground (Common with Transmitter Ground)               | 1    |
| 12  | RD-              | Receiver Inverted DATA out. AC Coupled                         |      |
| 13  | RD+              | Receiver Non-inverted DATA out. AC Coupled                     |      |
| 14  | $V_{EER}$        | Receiver Ground (Common with Transmitter Ground)               | 1    |
| 15  | $V_{CCR}$        | Receiver Power Supply                                          |      |
| 16  | $V_{CCT}$        | Transmitter Power Supply                                       |      |
| 17  | $V_{EET}$        | Transmitter Ground (Common with Receiver Ground)               | 1    |
| 18  | TD+              | Transmitter Non-Inverted DATA in. AC Coupled.                  |      |
| 19  | TD-              | Transmitter Inverted DATA in. AC Coupled.                      |      |
| 20  | $V_{\text{EET}}$ | Transmitter Ground (Common with Receiver Ground)               | 1    |



#### **Notes:**

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on  $T_{DIS}$  >2.0V or open, enabled on  $T_{DIS}$  <0.8V.
- 3. Should be pulled up with  $4.7k 10k\Omega$  on host board to a voltage between 2.0V and 3.6V.MOD\_DEF (0) pulls line low to indicate module is plugged in.
- 4. This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely Fiber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with >  $30k\Omega$  resistor. The input states are:

Low (0 - 0.8V): Reduced Bandwidth

(>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Full Bandwidth

Open: Reduced Bandwidth

5. LOS is open collector output should be pulled up with  $4.7k - 10k\Omega$  on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

### Specifications -

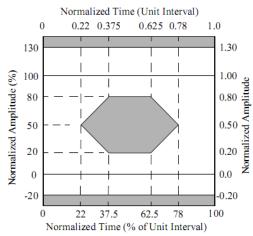
#### **Absolute Maximum Ratings**

| Parameter                 | Symbol | Min. | Тур. | Max.    | Unit | Note |
|---------------------------|--------|------|------|---------|------|------|
| Storage Temperature       | Ts     | -40  |      | 85      | °C   |      |
| Relative Humidity         | RH     | 5    |      | 95      | %    |      |
| Power Supply Voltage      | Vcc    | -0.5 |      | 4       | V    |      |
| Signal Input Voltage      |        | -0.3 |      | Vcc+0.3 | V    |      |
| Receiver Damage Threshold |        | 5    |      |         | dBm  |      |

#### **Recommended Operating Conditions**

| Parameter             | Symbol     | Min.      | Тур.      | Max. | Unit  | Note             |
|-----------------------|------------|-----------|-----------|------|-------|------------------|
| Case Operating        | $T_{case}$ | 0         |           | 70   | °C    | SFP-AGLP-51-120  |
| Temperature           |            | -10       |           | 80   | °C    | SFP-AGLP-51-120E |
|                       |            | -40       |           | 85   | °C    | SFP-AGLP-51-120A |
| Power Supply Voltage  | $V_{CC}$   | 3.13      | 3.3       | 3.47 | V     |                  |
| Power Supply Current  | Icc        |           |           | 300  | mA    |                  |
| Power Supply Noise    |            |           |           | 100  | mVp-p | 100 Hz to 1 MHz  |
| Rejection             |            |           |           |      |       |                  |
| Data Rate             |            |           | 1250/1250 |      | Mbps  | TX Rate/RX Rate  |
| Transmission Distance |            |           |           | 120  | km    |                  |
| Coupled Fiber         | Single-m   | ode fiber |           |      |       | 9/125 μm SMF     |

#### **Transmitter Specifications**


| Parameter            | Symbol | Min. | Тур. | Max. | Unit | Note |
|----------------------|--------|------|------|------|------|------|
| Average Output Power | Pout   | 0    |      | 5    | dBm  | 1    |



| Extinction Ratio                  | ER                                           | 9    |      |        | dB  |           |
|-----------------------------------|----------------------------------------------|------|------|--------|-----|-----------|
| Center Wavelength                 | λc                                           | 1530 | 1550 | 1570   | nm  | DFB Laser |
| Side Mode Suppression Ratio       | SMSR                                         | 30   |      |        | dB  |           |
| Spectrum Bandwidth(-20dB)         | σ                                            |      |      | 1      | nm  |           |
| Transmitter OFF Output Power      | $\mathbf{P}_{Off}$                           |      |      | -45    | dBm |           |
| Differential Line Input Impedance | RIN                                          | 90   | 100  | 110    | Ω   |           |
| Output Eye Mask                   | Compliant with IEEE802.3 z (class 1 laser sa |      |      | afety) | 2   |           |

#### Notes

- 1. Measure at 2^7-1 NRZ PRBS pattern.
- 2. Transmitter eye mask definition.



#### **Receiver Specifications**

| Parameter                         | Symbol           | Min. | Тур. | Max. | Unit | Note |
|-----------------------------------|------------------|------|------|------|------|------|
| Input Optical Wavelength          | $\lambda_{IN}$   | 1270 |      | 1610 | nm   | APD  |
| Receiver Sensitivity              | $P_{IN}$         |      |      | -31  | dBm  | 1    |
| Input Saturation Power (Overload) | P <sub>SAT</sub> | -10  |      |      | dBm  |      |
| Loss Of Signal Assert             | $P_{A}$          |      |      | -31  | dBm  |      |
| Loss Of Signal De-assert          | $P_{D}$          | -38  |      |      | dBm  | 2    |
| LOS Hysteresis                    | $P_A$ - $P_D$    | 0.5  | 2    | 6    | dB   |      |

#### **Notes**

- 1. Measured with Light source 1550 nm, ER=9dB; BER =<10^-12 @PRBS=2^7-1 NRZ
- 2. When LOS de-asserted, the RX data± output is High-level (fixed)

#### **Electrical Interface Characteristics**

| Parameter                      | Symbol     | Min. | Тур. | Max.    | Unit | Note |
|--------------------------------|------------|------|------|---------|------|------|
| Transmitter                    |            |      |      |         |      |      |
| Total Supply Current           | Icc        |      |      | Α       | mA   | 1    |
| Transmitter Disable Input-High | $V_{DISH}$ | 2    |      | Vcc+0.3 | V    |      |
| Transmitter Disable Input-Low  | $V_{DISL}$ | 0    |      | 0.8     | V    |      |



| Transmitter Fault Input-High | $V_{TxFH}$ | 2 | Vcc+0.3 | V  |       |
|------------------------------|------------|---|---------|----|-------|
| Transmitter Fault Input-Low  | $V_{TxFL}$ | 0 | 0.8     | V  |       |
| Receiver                     |            |   |         |    |       |
| Total Supply Current         | Icc        |   | В       | mA | 1     |
| LOSS Output Voltage-High     | $V_{LOSH}$ | 2 | Vcc+0.3 | V  | LVTTL |
| LOSS Output Voltage-Low      | $V_{LOSL}$ | 0 | 0.8     | V  |       |

#### **Notes**

1. A (TX) + B (RX) = 300mA (Not include termination circuit)

#### **Regulatory Compliance**

| Feature                            | Reference                            | Performance               |
|------------------------------------|--------------------------------------|---------------------------|
| Electrostatic discharge(ESD)       | IEC/EN 61000-4-2                     | Compatible with standards |
| Electromagnetic Interference (EMI) | FCC Part 15 Class B EN 55022 Class B | Compatible with standards |
|                                    | (CISPR 22A)                          |                           |
| Laser Eye Safety                   | FDA 21CFR 1040.10, 1040.11 IEC/EN    | Class 1 laser product     |
|                                    | 60825-1, 2                           |                           |
| Component Recognition              | IEC/EN 60950 , UL                    | Compatible with standards |
| ROHS                               | 2002/95/EC                           | Compatible with standards |
| EMC                                | EN61000-3                            | Compatible with standards |

### **Digital Diagnostic Functions -**

ASCENT SFP-AGLP-51-120 transceivers support the 2-wire serial communication protocol as defined in the SFP MSA. It is very closely related to the E2PROM defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, ASCENT SFP transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in E2PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive



edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bidirectional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Digital diagnostics for the SFP-AGLP-51-120 are internally calibrated by default.

### **Ordering Information -**

| Product part Number | Data Rate<br>(Mbps) | Media             | Wavelength<br>(nm) | Transmission Distance(km) | Temperatur<br>Range(Tcase | _          |
|---------------------|---------------------|-------------------|--------------------|---------------------------|---------------------------|------------|
| SFP-AGLP-51-120     | 1250                | Single-mode fiber | 1550               | 120                       | 0 to 70                   | commercial |
| SFP-AGLP-51-120E    | 1250                | Single-mode fiber | 1550               | 120                       | -10 to 80                 | extended   |
| SFP-AGLP-51-120A    | 1250                | Single-mode fiber | 1550               | 120                       | -40 to 85                 | industrial |



#### **Contact Information** •





#### **Ascent Communication Technology Ltd**

#### **AUSTRALIA**

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

#### **CHINA**

Unit 1933, 600 Luban Road 200023, Shanghai CHINA Phone: +86-21-60232616

#### **EUROPE**

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

WEB: www.ascentcomtec.com

#### **HONG KONG SAR**

Unit 9, 12<sup>th</sup> Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, HONG KONG Phone: +852-2851 4722

#### **USA**

2710 Thomes Ave Cheyenne, WY 82001, USA Phone: +1-203 816 5188

#### **VIETNAM**

15 /F TTC Building, Duy Tan Street Cau Giay Dist., Hanoi, VIETNAM Phone: +84 243 795 5917

EMAIL: <a href="mailto:sales@ascentcomtec.com">sales@ascentcomtec.com</a>

Specifications and product availability are subject to change without notice. Copyright © 2017 Ascent Communication Technology Limited. All rights reserved. Ver. ACT\_SFP-AGLP-51-120\_Datasheet\_V1b\_Jul\_2017