

400G QSFP-DD ZR Coherent 80 km Optical Transceiver Module

QSFP-DD Series

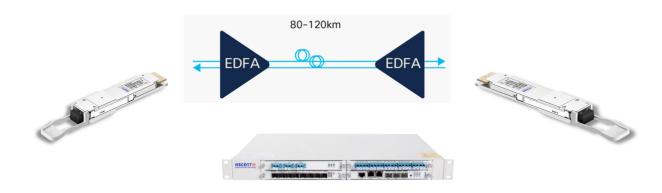
- Supports flex-grid channel spacing DWDM in C-band
- Supports client-sideInterfaces: 400GAUI-8
- Supports line-side DP-16QAM with CFEC
- Standard QSFP-DD type 2 form factor
- 76-pin QSFP-DD MSA compliant connector
- Compliant to CMIS 5.0
- RoHS compliant

Ascent's 400G ZR QSFP-DD Digital Coherent Optic Modules are 400 Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) transceivers designed for 80 km optical communication applications over a standard pair of G.652 Single-Mode Fiber (SMF).

The based on DP- 16QAM supporting extended C-band, and feature polarization diversity coherent detection and advanced electronic link equalization. Chromatic dispersion compensation can be applied to the receive side of the demodulator. This module is managed utilizing the two-wire interface that is specified in the Common Management Interface Specification (CMIS).

The module uses a 76-pin QSFP-DD MSA QSFP-DD Hardware Specification connector for all electrical interfaces with the host card, whereas the optical interfaces on the line side are provided through the optical receptacles on the QSFP-DD. The module can be portioned into three functional parts: TX path, RX path and Control & Power block.

The host interface is comprised of a total of 8 high-speed SerDes lanes. This allows modules to support one interfaces for 400GbE application.

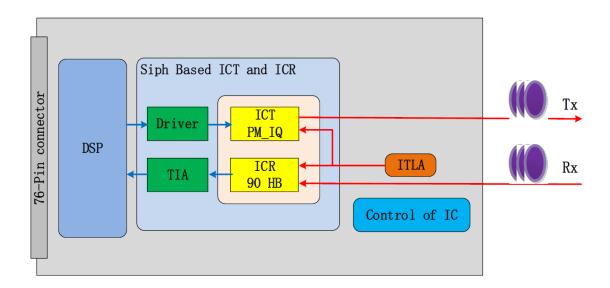


Key Features -

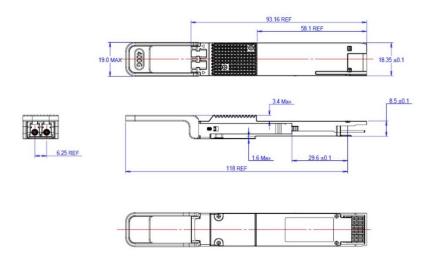
- Supports flex-grid channel spacing DWDM in C-band
- Supports client-side Interfaces: 400GAUI-8
- Support Line-side DP-16QAM with CFEC
- Standard QSFP-DD type 2 form factor
- 76-pin QSFP-DD MSA compliant connector
- Compliant to CMIS 5.0
- Compliant to OIF Implementation Agreement for Coherent CMIS, Rev 01.1
- RoHS compliant

Application Diagram

The key application for the ZR standard is allowing the transmission of a 400G wavelength in point-to-point topology up to a distance of 120 km with the Mux/Demux and Amplifier as depicted the below.



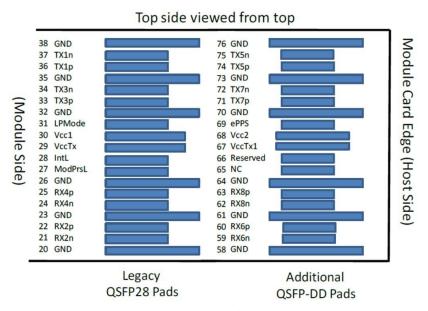
Ascent A1600 1U, 2U and 4U DCI platforms are highly integrated, compact in size. It features standard 19" 1U, 2U, 4U chassis, power supply (AC/DC optional), 1+1 backup, ready to install. 1U, 2U, and 4U transmission platforms support max 4, 8 and 16 services slots, mixed different interface modules (hot pluggable) such as Mux/Demux, Amplifiers, and in-band and out-of-band network management, flexible bandwidth per channel, remote update, easy maintenance.

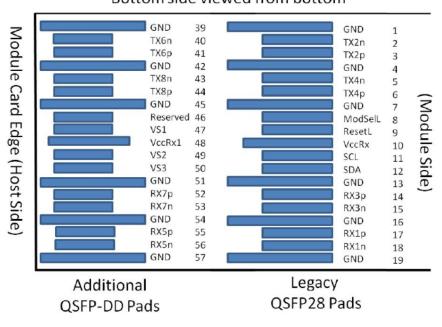

Functional Diagram

QDD ZR overviewThe application field of the module is widely used for short haul (ZR). As shown in the figure below, it is comprised of high-data lanes, a single 3.3V power supply, an IIC interface for module control and status report, and dedicated alarm and control pins (not shown on the figure).

Outline Diagram

The pluggable module is fully compliant with the QSFP-DD Type 2 Module Specification, including dimensions and tolerances for the connector, cage and module system. The module shall be designed to be inserted into a host board with a railing system that includes a heat sink.




Pin Assignment •

The electrical interfaces, including pad assignments for data, control, status and power supplies and host PCB layout requirements, of the module is fully compliant with the QSFP-DD MSA QSFP-DD-Hardware Specification, Rev 5.0.

The case of the QSFP-DD module is isolated from the module's circuit ground, GND, to provide the equipment designer flexibility regarding connections between external electromagnetic interference shields and circuit ground, GND, of the module.

Bottom side viewed from bottom

Module Pad Layout

Pin #	Logic	Symbol	Description	Plug Sequence
1	J	GND	Ground	1B
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B
4		GND	Ground	1B
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B
7		GND	Ground	1B
8	LVTTL-I	ModSelL	Module Select	3B
9	LVTTL-I	ResetL	Module Reset	3B
10		VccRx	+3.3V Power Supply Receiver	2B
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B
13		GND	Ground	1B
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B
15	CML-O	Rx3n	Receiver Inverted Data Output	3B
16	GND	Ground	1B	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B
18	CML-O	Rx1n	Receiver Inverted Data Output	3B
19		GND	Ground	1B
20		GND	Ground	1B
21	CML-O	Rx2n	Receiver Inverted Data Output	3B
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B
23		GND	Ground	1B
24	CML-O	Rx4n	Receiver Inverted Data Output	3B
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B
26		GND	Ground	1B
27	LVTTL-O	ModPrsL	Module Present	3B
28	LVTTL-O	IntL	Interrupt	3B
29		VccTx	+3.3V Power supply transmitter	2B
30		Vcc1	+3.3V Power supply	2B
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B
32		GND	Ground	1B
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3B
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B
35		GND	Ground	1B
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B
38		GND	Ground	1B
39		GND	Ground	1A
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A

41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A
42		GND	Ground	1A
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	3A
45		GND	Ground	1A
46		Reserved	For future use	3A
47		VS1	Module Vendor Specific 1	3A
48		VccRx1	3.3V Power Supply	2A
49		VS2	Module Vendor Specific 2	3A
50		VS3	Module Vendor Specific 3	3A
51		GND	Ground	1A
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A
53	CML-O	Rx7n	Receiver Inverted Data Output	3A
54		GND	Ground	1A
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A
56	CML-O	Rx5n	Receiver Inverted Data Output	3A
57		GND	Ground	1A
58		GND	Ground	1A
59	CML-O	Rx6n	Receiver Inverted Data Output	3A
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A
61		GND	Ground	1A
62	CML-O	Rx8n	Receiver Inverted Data Output	3A
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A
64		GND	Ground	1A
65		NC	No Connect	3A
66		Reserved	For future use	3A
67		VccTx1	3.3V Power Supply	2A
68		Vcc2	3.3V Power Supply	2A
69		Reserved	For Future Use	3A
70		GND	Ground	1A
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A
73		GND	Ground	1A
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	3A
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A
76		GND	Ground	1A

Hardware Control and Status Pins

In addition to the 2-wire serial interface the module has the following low speed signals for control and status:

- ModSelL
- ResetL
- LPMode

- ModPrsL
- IntL
- ePPS
- ModSelL

The ModSelL is an input signal that shall be pulled to Vcc in the QSFP-DD module. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP-DD modules on a single 2-wire interface bus. When ModSelL is "High", the module shall not respond to or acknowledge any 2-wire interface communication from the host.

In order to avoid conflicts, the host system shall not attempt 2-wire interface communications within the ModSelL de-assert time after any QSFP-DD modules are deselected. Similarly, the host must wait at least for the period of the ModSelL assert time before communicating with the newly selected module. The assertion and de - asserting periods of different modules may overlap as long as the above timing requirements are met.

ResetL

The ResetL signal shall be pulled to Vcc in the module. A low level on the ResetL signal for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state.

LPMode

LPMode is an input signal. The LPMode signal shall be pulled up to Vcc in the QSFP -DD module. LPMode is used in the control of the module power mode.

See CMIS Section 6.3.1.3.

ModPrsL

ModPrsL shall be pulled up to Vcc Host on the host board and pulled low in the module. The ModPrsL is asserted "Low" when the module is inserted. The ModPrsL is deasserted "High" when the module is physically absent from the host connector due to the pull-up resistor on the host board.

Low speed signaling other than the SCL and SDA interface is based on Low Voltage TTL (LVTTL) operating at Vcc. Vcc refers to the generic supply voltages of VccTx, VccRx, Vcc host or Vcc1. Hosts shall use a pull-up resistor connected to Vcc host on each of the 2-wire interface SCL (clock), SDA (data), and all low speed status outputs. The SCL and SDA is a hot plug interface that may support a bus topology. During module insertion or removal, the module may implement a pre-charge circuit which prevents corrupting data transfers from other modules that are already using the bus.

The QSFP-DD low speed electrical specifications are given in the table below. This specification ensures compatibility between host bus masters and the 2-wire interface.

Parameter	Symbol	Min.	Max.	Unit	Note
SCL and SDA	VOL	0	0.4	V	IOL(max)=3 mA for fast mode, 20 mA
					for Fast-mode plus
	VIL	-0.3	Vcc * 0.3	V	
SCL and SDA	VIH	Vcc * 0.7	Vcc + 0.5	V	
Capacitance for SCL and SDA	Ci		14	pF	
I/O signal					

Total bus capacitive load for SCL and SDA	Cb		100	pF	For 400 kHz clock rate use 3.0 k Ω pullup resistor, max.
			200	pF	For 400 kHz clock rate use 1.6 k Ω pull-
					up resistor, max.
LPMode, ResetL, ModSelL	VIL	-0.3	0.8	V	
and ePPS	VIH	2	Vcc + 0.3	V	
LPMode, ResetL and	lin		360	uA	0V <vin<vcc< td=""></vin<vcc<>
ModSelL					
ePPS	lin		TBD	uA	0V <vin<vcc< td=""></vin<vcc<>
	VOL	0	0.4	V	IOL=2.0 mA
IntL	VOH	Vcc - 0.5	Vcc + 0.3	V	10 kΩ pull-up to Host Vcc
	VOL	0	0.4	V	IOL=2.0 mA
ModPrsL	VOH			V	ModPrsL can be implemented as a
					short-circuit to GND on the module

Module Configuration

Host Interface

The module support for wide applications with Host interfaces: 400GAUI-8. The host interface conforms to existing protocol standards and operate over standard physical layer specifications. The termination, mapping and/or aggregation of this signal is into an internal ZR frame structure. The ZR frame structure is then adapted to the CFEC engine and DSP framed for transmission over the coherent media Interface. The Host interface signaling conform to existing protocol and electrical standards as defined by IEEE 802.3TM-2018.

The Host Interface compliant to very short reach high speed chip-to-module electrical interface CEI-56G-VSR-PAM4 for PAM4 coding.

Host Interface	Application Data Rate	Lane Count	Lane Signaling Rate	Modulation
400GAUI-8	425.00 Gb/s	8	26.5625 GBaud (± 100 ppm)	PAM4

Media Interface

The media interface utilizes DP-16QAM modulation, polarization diversity coherent detection, and advanced electronic link equalization with chromatic dispersion and differential group delay compensation.

The module terminates the host interface signal then maps and aggregates them into an internal ZR frame structure. The ZR frame structure is then adapted to the CFEC engine and DSP framed for transmission over the coherent media interface.

Application Bit Rate	Baud Rate	Modulation	FEC
478.75 Gb/s	59.84375GBd	DP-160AM	CFEC

Management Interface

The management communication interface provides a number of elementary management operations that allow the host to read from or write to byte-sized management registers in the management memory map of the module. There are read and write operations both for single bytes and for contiguous byte

sequences. Two types of read operations, either with implicit addressing (read from current address) or with explicit addressing, are supported.

The management communication interface distinguishes a master role and a slave role. The host shall be the master and the module shall be the slave.

The master initiates all operations that lead to data transfer. Data can be transferred from the master to the slave (in write operations) and from the slave to the master (in read operations).

Physical Layer

The physical layer supporting communication between host and module is the Two Wire serial Interface (TWI). The TWI consists of a clock signal (SCL) and a data signal (SDA).

This 2-wire interface supports bus speeds:

- Fast mode I2C Fast-mode (Fm) ≤ 400 kbit/s
- Fast mode plus I2C Fast-mode Plus (Fm+) ≤ 1 Mbit/s

The SDA signal is bi-directional. During binary data transfer, the SDA signal shall transition when SCL is low.

SDA transitions when SCL is high are used to mark either the beginning (START) or ending (STOP) of a dat a transfer.

Specifications -

Absolute Maximum Ratings

The absolute maximum ratings given in the table below define the damage thresholds. Hence, the component shall withstand the given limits without any irreversible damage.

Parameter	Min.	Max.	Unit	Note
Storage Temperature	-40	85	°C	
Storage Humidity (Relative)	-	85	%	Non-condensing
Case Temperature	0	75	°C	
Operating Humidity (Relative)	-	85	%	Non-condensing
Short term Operating Case Temperature		80	°C	<24 hours
Power Supply Absolute Range	-0.3	3.63	V	
RX Optical Max.imum Input Power	-	10	dBm	

Operating Conditions

Parameter	Min.	Max.	Unit	Note
Operating Case Temperature	0	75	°C	
Operating Humidity (Relative)	-	85	%	no-Condensing
Power Supply Operating Range	3.135	3.465	V	
RX Optical Input Power	-	0	dBm	

Power Supply

The 400G ZR QSFP-DD DCO is a Power Class 8 module. In order to avoid exceeding the host system power capacity, upon hot-plug, power cycle or reset, all QSFP-DD modules shall power up in Low Power Mode if LPMode is asserted. If LPMode is not asserted the module will proceed to High Power Mode withou t host intervention. Specification values for maximum instantaneous, sustained and steady state currents at each power class are given in table 5. The power supply requirements are specified in the table below.

Parameter	Min.	Тур.	Max.	Unit	Note
3.3V DC Power Supply Voltage	3.135	3.3	3.465	V	
3.3V DC Power Supply Current			7	Α	
Power Dissipation			18	W	
Low Power Consumption			1.5	W	
Module Inrush Current			100	mA/us	
Turn-off Current	-100			mA/us	
Power Supply Noise			25	mV	

High Speed Electrical Specifications

The transmitter and receiver comply with the CEI-56G-VSR-PAM4 electrical specification (OIF-CEI-04.0).

The data lines are AC-coupled and terminated in the module per the following figure from the QSFP-DD MSA. The high-speed signals follow the electrical specifications of CEI-56G-VSR-PAM as defined in OIF-CEI-04.0.

The high speed signals consist of 8 transmit and 8 receive differential pairs identified as TX[8:1]p / TX[8:1]n and RX[8:1]p / RX[8:1]n. These signals can be operated in 400GAUI-8 depending on the capability of the host.400GAUI-8 mode provides 8 differential lanes using PAM4 signaling operating at 26.5625 GBaud. This results in 8 lanes of 50Gb/s for a total of 400Gb/s. This mode allows connection to PMD configurations of 400GUAI-8.

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Electrical Characteristics for Transmitter

Parameter	Min.	Тур.	Max.	Unit	Note
Signal Rate, each Lane	26.5625	5±100ppn	า	GBaud	
Differential Peak-Peak Input Voltage Tolerance			900	mVpp	

Electrical Characteristics for Receiver

Parameter	Min.	Тур.	Max.	Unit	Note
Signal Rate, each Lane	26.5625	±100ppn	n	GBaud	
Differential Peak-Peak Input Voltage Tolerance		750	900	mVpp	
Transition Time, 20% to 80%		9.5		ps	

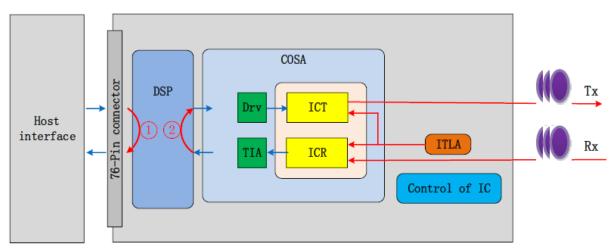
Optical Specifications

All specifications given in this document are End-of-Life numbers and are valid under operating conditions unless specific noted:

Optical Transmitter Specifications

Parameter	Min.	Тур.	Max.	Unit	Notes
Transmitter Frequency Range	1528.	1547.	1567.	Nm	C band 75GHz ITU-T grid. Frequency
	77	72	13		range over which the specifications
					hold unless noted otherwise.
Laser Frequency Stability	-1.8		1.8	GHz	Frequency stability relative to ITU
					grid.
Laser Frequency Accuracy	-1.8		1.8	GHz	
Laser Frequency Fine Tuning Range	-6.0		6.0	GHz	
Fine Tuning Resolution		100		MHz	
Channel Tuning Speed	-		60	S	
Laser LineWidth			100	kHz	
Transmitter Output Power Range	-10		-6	dBm	
Transmitter Laser Disable Time			180	ms	
Output Power Stability	-0.5		0.5	dB	Difference over temperature, time,
					wavelength and aging.
Output Power Accuracy	-2		2	dB	Difference between the set value
					and actual value over aging.
Transmitter Turn-up Time from Cold	-		120	S	
Start					
Transmitter OSNR (Inband)	34		-	dB/0.1nm	
Transmitter Back Reflectance	-		-24	dB	
Transmitter Output Power with TX	-		-20	dBm	
Disabled					
Transmitter Polarization Dependent	-		1.5	dB	Power deference between X and Y
Power					polarization

Optical Receiver Specifications


Parameter	Min.	Тур.	Max.	Unit	Notes
Receiver Frequency Range	1528.	1547.	1567.	Nm	
	77	72	13		
Input Power Range	-12		0	dBm	Signal power of the channel at the OSNR
					Penalty < 0.5dB
OSNR Sensitivity		24	26	dB/0.1nm	
Receiver Sensitivity			-20	dBm	Input power needed to achieve post FEC
					BER < 1E-15 when OSNR Tolerance > 26
					dB/0.1nm
Los Assert	-20		-16	dBm	
Los Hysteresis	1.0		2.5	dB	

CD Tolerance	2400		ps/nm	Tolerance to Chromatic Dispersion.
PMD Tolerance	10		ps	Tolerance to PMD with < 0.5 dB penalty to
				OSNR sensitivity.
Peak PDL Tolerance	3.5		dB	Tolerance to peak PDL with < 1.3 dB
				penalty to OSNR sensitivity when change in
				SOP is < =1 rad/ms.
Tolerance to Change in SOP	50	-	rad/ms	
Input Power Transient	-2	2	dB	Tolerance to change in input power with <
Tolerance				0.5 dB penalty to OSNR sensitivity.
Input Power Reading Accuracy	-2	2	dB	
Optical Return Loss	-20		dB	Optical reflectance at Rx connector input.
Receiver Turn-up Time from	-	120	S	From module reset, with valid optical input
Cold Start				signal present.

Loopback

The module support loopback functionality. The host loopback (Loopback ①) and the network loopback (Loopback ②) are shown at bellowing figure 2. For details on controlling the loopback mode, please refer to Reference [2]. In optional loopback, TXn is looped back to RXn, for example TX0+ to RX0+, on both host and media side.

Module Loopback Orientation

Insertion, Extraction and Retention Force

The following table details the mechanical forces to insert, remove, and retain the module in a standard QSFP-DD card cage.

Parameter	Min.	Max.	Unit	Note
Insertion Force		90	N	
Extraction Force		50	N	
Retention Force	90		N	

EMI, EMC and ESD Specifications

The module is compliant with the requirements listed in the table below when installed in the host equipment.

Parameter	Reference	Value	Unit	Note
ESD Immunity	IEC 61000-4-2	8	kV	Contact Discharge
		15	kV	Air Discharge
ESD (HBM model)	JEDEC JESD22-A114-B	1	kV	High-Speed Contacts
		2	kV	Other pins
EMC Immunity	IEC 61000-4-3			
EMI Emission	FCC Class B			

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Don't directly look into the transmitter fiber connector at any time while the module is in operation.

Ordering Information

Product Name	Product Description
QSFP-DD-ZR-80	QSFP DD 400G Digital Coherent Optics, 16QAM Plug-in, 80km, C-band
	Wavelength Optical Transceiver, Duplex LC, DOM

Contact Information •

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

WEB: www.ascentcomtec.com

HONG KONG SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, HONG KONG Phone: +852-2851 4722

USA

2710 Thomes Ave Cheyenne, WY 82001, USA Phone: +1-203 816 5188

VIETNAM

15 /F TTC Building, Duy Tan Street Cau Giay Dist., Hanoi, VIETNAM Phone: +84 243 795 5917

EMAIL: sales@ascentcomtec.com

Specifications and product availability are subject to change without notice. Copyright © 2021 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_QSFP-DD-ZR-80_Datasheet_V1b_Dec_2021