

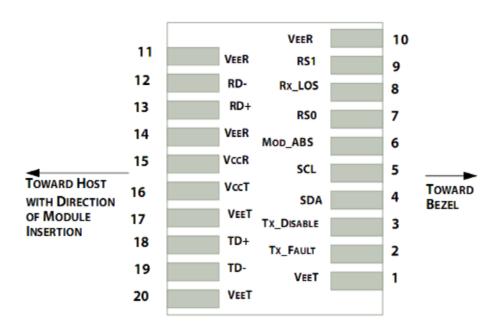
25 Gb/s 1310 nm Single-Mode SFP+ Transceiver

SFP28 Series

- Up to 26.5 Gb/s data links
- Up to 10 km transmission distance on SMF
- DFB transmitter and PIN photo-detector
- Metal enclosure
- Low power dissipation
- 2-wire interface with integrated digital diagnostic monitoring
- Hot-pluggable SFP+ footprint
- Compliant with SFF 8431 and SFF 8472

Ascent's SFP28 transceivers are designed for use in 25G Gigabit Ethernet links with distances up to 10 km over single-mode fiber. These transceivers include a PIN photo detector diode and FP transmitter. Digital diagnostic functions are available via a 2-wire interface.

Ascent's SFP28 transceivers provide a unique enhanced digital diagnostic monitoring interface which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags which alerts end users when particular operating parameters are outside of a factory set normal range.


Ascent's 25G SFP28 transceivers are compliant with SFF 8431 and SFF 8472 standards, and offer a convenient solution for high-speed storage area networks, OBSAI and CPRI 10 applications, and LTE optical repeater applications.

Key Features -

- Up to 10 km transmission distance
- FP transmitter and PIN photo-detector
- Duplex LC connector
- Metal enclosure, for lower EMI
- Electrical interface compliant to SFF-8431 specifications
- 2-wire interface for management specifications compliant with SFF-8472
- Compliant with SFP+ MSA
- 25GBASE-LR-S
- Single 3.3V power supply
- Power dissipation < 1.2W

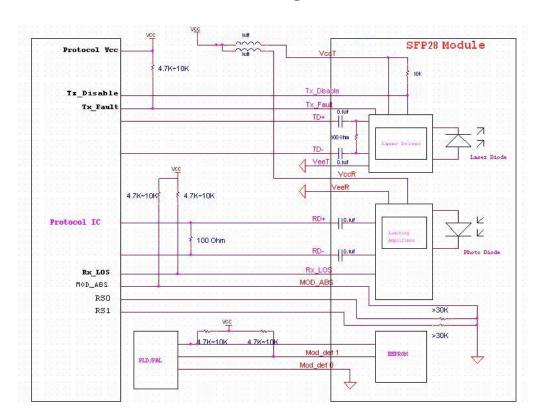
Pin Assignment •

Pin out of Connector Block on Host Board

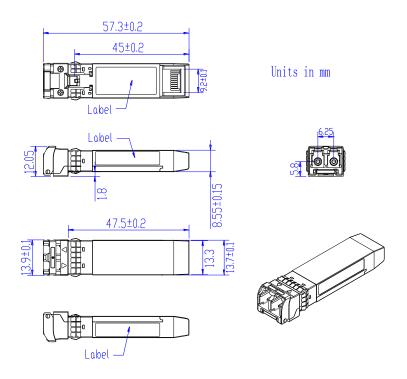
Pin	Symbol	Name/Description	Note
1	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4

5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	1
10	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:


- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7 k Ω to 10 k Ω resistor on the host board if intended for use. Pull up voltage should be between 2.0 V to Vcc + 0.3 V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0 \text{ V}$ or open, enabled on $T_{DIS} < 0.8 \text{ V}$.
- 4. Should be pulled up with 4.7 k Ω to 10 k Ω host board to a voltage between 2.0 V and 3.6 V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. Internally pulled down per SFF-8431 Rev 4.1.
- 6. LOS is an open collector output. It should be pulled up with 4.7 k Ω to 10 k Ω on the host board to a voltage between 2.0 V and 3.6 V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Regulatory Compliance -


Feature	Reference	Performance
Electrostatic Discharge (ESD)	IEC/EN 61000-4-3	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class B	Compatible with standards
	(CISPR 22A)	
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11 IEC/EN	Class 1 laser product
	60825-1, 2	
Component Recognition	IEC/EN 60950, UL	Compatible with standards
ROHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards

Host – Transceiver Interface Block Diagram

Outline Dimensions

Digital Diagnostic Functions -

ASCENT SFP28-25G-LP-31-10 transceivers support the 2-wire serial communication protocol as defined in the SFP+ MSA.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, ASCENT SFP28 transceivers provide a unique enhanced digital diagnostic monitoring interface which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags which alerts end users when particular operating parameters are outside of a factory set normal range.

The SFP+ MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8-bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8-bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bidirectional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Specifications -

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit Note
Storage Temperature	Ts	-40	-	85	°C
Relative Humidity	RH	5	-	95	%
Power Supply Voltage	VCC	-0.3	-	4	V

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Temperature	Tcase	0	-	70	°C	Commercial
		-40	-	85	°C	Industrial
Power Supply Voltage	VCC	3.14	3.3	3.47	V	
Power Supply Current	ICC	-	-	300	mA	Commercial
		-	-	360	mA	Industrial
Data Rate	BR	24.3	25.78	26.5	Gbps	
Transmission Distance	TD	-	-	10	km	
Coupled Fiber	Single-mode fiber					9/125 μm SMF

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply Voltage	Vcc	3.14	3.3	3.46	V	
Supply Current	Icc			300	mA	Commercial
				360	mA	Industrial
Transmitter						
Input Differential Impedance	Rin		100		Ω	1
Differential Data Input Swing	$V_{\text{in,pp}}$	180		800	mV	
Transmit Disable Voltage	V_{DIS}	Vcc-1.3		Vcc	V	
Transmit Enable Voltage	V_{EN}	Vee		Vee+ 0.8	V	2
Receiver						
Differential Data Output Swing	$V_{out,pp}$	300		850	mV	3
LOS Fault	V_{LOS} fault	Vcc-1.3		V_{CCHOST}	V	4
LOS Normal	V_{LOS} norm	Vee		Vee+0.8	V	4

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. Into 100 Ω differential termination.
- 4. Loss Of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitter						
Average Output Power	P _{OUT}	-5		2	dBm	1
Optical Wavelength	λ	1295		1325	nm	
Spectral Width (RMS)	σ			1	nm	
Optical Extinction Ratio	ER	3.5			dB	
Receiver						
Rx Sensitivity	R _{SEN}			-13.3	dBm	2
Input Saturation Power (Overload)	P _{SAT}	0.5			dBm	
Input Optical Wavelength	λC	1260		1610	nm	
LOS De -Assert	LOSD			-14	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5			dB	

Notes:

- 1. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 2. Measured with a PRBS 2^{31} -1 test pattern @ 25.78 Gb/s, BER @ $5*10^{-5}$.

Ordering Information

Product Name Product Description

SFP28-25G-LP-31-10 SFP28 plug-in, 25 Gbps, 10 km, TX=1310/RX, on two single mode fibres, LC/PC

Contact Information

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

WEB: www.ascentcomtec.com

HONG KONG SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, HONG KONG Phone: +852-2851 4722

USA

2710 Thomes Ave Cheyenne, WY 82001, USA Phone: +1-203 816 5188

VIETNAM

15 /F TTC Building, Duy Tan Street Cau Giay Dist., Hanoi, VIETNAM Phone: +84 243 795 5917

EMAIL: <u>sales@ascentcomtec.com</u>

Specifications and product availability are subject to change without notice. Copyright © 2018 Ascent Communication Technology Limited. All rights reserved. Ver. ACT-SFP28-25G-LP-31-10_Datasheet_V1ac_May_2018