

800 Gb/s OSFP SR8 50m Transceiver

OSFP Series

- 8x100G PAM4 retimed
 800GAUI-8 electrical interface
- Maximum link length of 30m on OM3 or 50m on OM4
- Hot Pluggable OSFP form factor
- Compliant with CMIS 5.2
- Compliant with IEEE 802.3db
- Compliant to OSFP Module
 Specification Rev 5.0

Ascent's OSFP-800G-SR8D-01 is an Eight-Channel, Parallel, Pluggable, Fiber-Optic OSFP for 800 Gigabit Ethernet applications. This transceiver is a high performance module for short-range data communication and interconnect application.

The 800GBASE-SR8 OSFP Optical Transceiver Module is designed for use in 800Gb/s systems throughput up to 30m over OM3 or 50m over OM4 multimode fiber (MMF) using a wavelength of 850nm via dual MTP/MPO-12 connectors.

Digital diagnostics functions are also available via the I2C interface, as specified by the OSFP MSA, to allow access to real time operating parameters. With these features, this easy to install, hot swappable transceiver is suitable to be used in various applications, such as data centers, high-performance computing networks, enterprise core and distribution layer applications.

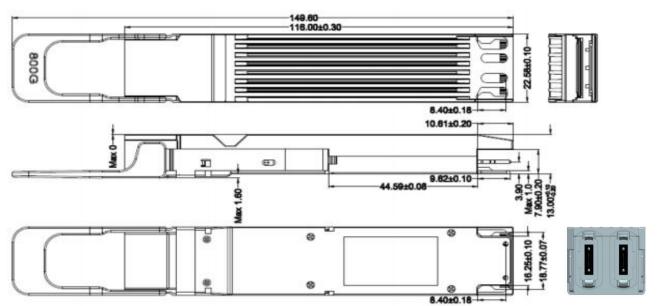
Key Features

OSFP Serial Optical Interface:

- 8x100G PAM4 retimed 800GAUI-8 electrical interface
- Dual MPO- 12 APC connector is provided
- 8 channel VCSEL arrays and 8 channels PIN photo detector arrays
- Maximum link length of 30m on OM3 or 50m on OM4

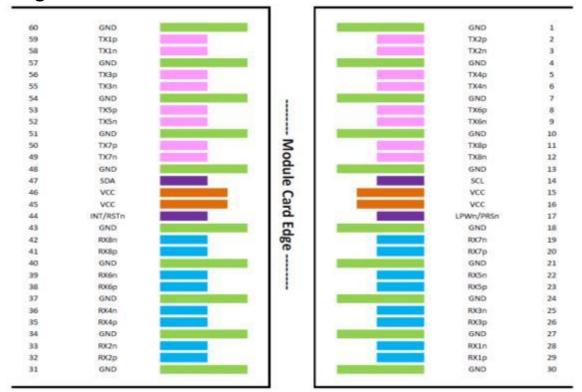
OSFP MSA Compliant:

- Hot Pluggable OSFP form factor
- Compliant to OSFP Module Specification Rev 5.0
- Compliant with CMIS 5.2


Support Protocol:

- Compliant with IEEE 802.3db
- Compliant to IEEE 802.3ck

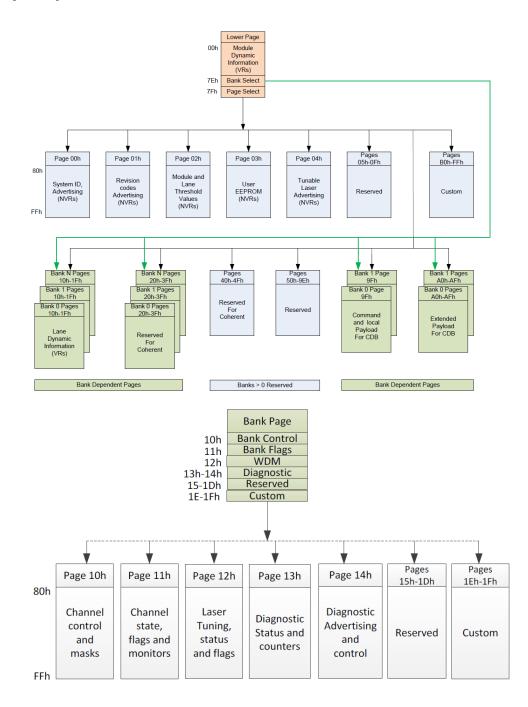
Low Power Consumption:


Less than 14W in temperature range of 0 to 70°C

Mechanical Dimensions

Pin Assignment -

Pin #	Logic	Symbol	Description	Plug Sequence	Notes
1	GND		Ground	1	
2	Тх2р	CML-I	Receiver Data Non-Inverted	3	
3	Tx2n	CML-I	Receiver Data Inverted	3	
4	GND		Ground	1	
5	Тх4р	CML-I	Receiver Data Non-Inverted	3	
6	Tx4n	CML-I	Receiver Data Inverted	3	
7	GND		Ground	1	
8	Тх6р	CML-I	Receiver Data Non-Inverted	3	
9	Tx6n	CML-I	Receiver Data Inverted	3	
10	GND		Ground	1	
11	ТХ8р	CML-I	Receiver Data Non-Inverted	3	
12	TX8n	CML-I	Receiver Data Inverted	3	
13	GND		Ground	1	
14	SCL	LVCMOS- I/O	2-wire Serial interface clock	3	
15	VCC		+3.3V Power	2	
16	VCC		+3.3V Power	2	
17	LPWn/PRSn	Multi- Level	Low-Power Mode / Module Present	3	1A
18	GND		Ground	1	
19	RX7n	CML-O	Receiver Data Inverted	3	
20	RX7p	CML-O	Receiver Data Non-Inverted	3	
21	GND		Ground	1	
22	RX5n	CML-O	Receiver Data Inverted	3	
23	RX5p	CML-O	Receiver Data Non-Inverted	3	


	Pin #	Logic	Symbol	Description	Plug Sequence	Notes
	24	GND		Ground	1	
	25	RX3n	CML-O	Receiver Data Inverted	3	
	26	RX3p	CML-O	Receiver Data Non-Inverted	3	
	27	GND		Ground	1	
	28	RX1n	CML-O	Receiver Data Inverted	3	
	29	RX1p	CML-O	Receiver Data Non-Inverted	3	
	30	GND		Ground	1	
	31	GND		Ground	1	
	32	RX2p	CML-O	Receiver Data Non-Inverted	3	
	33	RX2p	CML-O	Receiver Data Inverted	3	
	33 34	GND	CIVIL-O	Ground	1	
	35	RX4p	CML-O	Receiver Data Non-Inverted	3	
	36	RX4n	CML-O	Receiver Data Inverted	3	
	37	GND		Ground	1	
	38	RX6p	CML-O	Receiver Data Non-Inverted	3	
	39	RX6n	CML-O	Receiver Data Inverted	3	
	40	GND		Ground	1	
	41	RX8p	CML-O	Receiver Data Non-Inverted	3	
	42	RX8n	CML-O	Receiver Data Inverted	3	
	43	GND		Ground	1	
	44	INT/RSTn	Multi-Level	Module Interrupt / Module Reset	3	1B
	45	VCC		+3.3V Power	2	
	46	VCC		+3.3V Power	2	
	47	SDA	LVCMOS- I/O	2-wire Serial interface data	3	
	48	GND		Ground	1	
	49 50	TX7n TX7p	CML-I CML-I	Transmitter Data Inverted Transmitter Data Non-Inverted	3 3	
	50 51	GND	CIVIL-I	Ground	1	
	52	TX5n	CML-I	Transmitter Data Inverted	3	
	53	ТХ5р	CML-I	Transmitter Data Non-Inverted	3	
	54	GND		Ground	1	
	55	TX3n	CML-I	Transmitter Data Inverted	3	
	56	ТХЗр	CML-I	Transmitter Data Non-Inverted	3	
	57	GND		Ground	1	
	58	TX1n	CML-I	Transmitter Data Inverted	3	
	59 60	TX1p	CML-I	Transmitter Data Non-Inverted	3	
	60	GND		Ground	1	

Notes:

- 1. Plug Sequence specifies the mating sequence of the host connector and module. The contact sequence is 1,2,3.
- 2. LPWn/PRSn is a Multi-level signal for low power control from host to module and module presence indication from module to host. It designed according to OSFP Module Specification Section 13.5.3
- 3. INT/RSTnisa Multi-level signal for interrupt request from module to host and reset control from host to module. It designed according to OSFP Module Specification Section 13.5.2

Memory Map

Multiple Applications Support

The OSFP-800G-SR8D-01 supports CMIS 5.2 defined Application Advertising, Application Selection and Instantiation.

Application Advertising

The OSFP-800G-SR8D-01 supports CMIS 5.2 defined Application Advertising, Application Selection and Instantiation.

Instantiation.				
Address (Dec)			Value (Hex)	Description
	AppSel Code	Name		
86	0001b		HostInterfaceID	4B
87			MediaInterfaceID	D
88			HostLaneCount&MediaLaneCount	11
89			HostLaneAssignmentOptions	FF
01h:176			MediaLaneAssignmentOptions	FF
90	0010b		HostInterfaceID	11
91			MediaInterfaceID	10
92			HostLaneCount&MediaLaneCount	88
93			HostLaneAssignmentOptions	1
01h:177			MediaLaneAssignmentOptions	1
94	0011b		HostInterfaceID	E
95			MediaInterfaceID	0
96			HostLaneCount&MediaLaneCount	88
97			HostLaneAssignmentOptions	1
01h:178			MediaLaneAssignmentOptions	1
98	0100b		HostInterfaceID	51
99			MediaInterfaceID	12
100			HostLaneCount&MediaLaneCount	88
101			HostLaneAssignmentOptions	1
01h:179			MediaLaneAssignmentOptions	1
102	0101b		HostInterfaceID	4F
103			MediaInterfaceID	11
104			HostLaneCount&MediaLaneCount	44
105			HostLaneAssignmentOptions	11
01h:180			MediaLaneAssignmentOptions	11
106	0110b		HostInterfaceID	4D
107			MediaInterfaceID	1B
108			HostLaneCount&MediaLaneCount	22
109			HostLaneAssignmentOptions	55
01h:181			MediaLaneAssignmentOptions	55
110				FF
111				0
112				0
113				0
114				0
115				0
116				0
117				0

As shown in the table above, the OSFP-800G-SR8D supports 6 applications,

800GBASE-SR8, 400GBASE-SR8, 200GBASE-SR8, 2X400GBASE-SR4,4X200GBASE-SR2, and 8X100GBASE-SR1.

Application Selection and Instantiation

The host can select Applications by programming the AppSel value in Staged Set 0.

AppSel=1 is the default Application populated in the Active Control Set at power-on or reset.

*Note that the channels of the module are independent and can be configured separately.

(ie. up to eight 100GBASE-SR instances can be configured), however, it does not support different applications with different channels at the same time.

OSFP-800G-SR8D-01 supports two methods of application selection and instantiation.

The first method is implemented according to CMIS, and the second method is customized, which is simpler.

First method -

The applications switching configuration sequence is as follows: read Application Descriptor Registers and select the required Appsel. Write application configuration to DPConfigLane<i> in Stage Control Set 0, then write 1 to ApplyDPInitLane<i> to trigger Application Instantiation.

The Active Set can be read from page11h.

For example, select AppDescriptor3:

Step 1: Write 0x30 in Page10h Byte145~Byte152 (8 bytes)—Set AppselCode3

Step 2: Write 0xFF in Page10h Byte143—Set trigger register to run Application Instantiation.

TX & RX Squelch —

Default TX and RX auto-squelch is enabled. But TX and RX auto squelch disable, and force squelching function are not supported.

TX Input Equalization -

Default TX adaptive equalization is enabled. But TX adaptive equalization disable, and fixed equalization adjust function are not supported.

RX Output Equalization •

RX output Equalization follows CMIS Table below with default 1dB, readable and writable

Code Value	Bit pattern	Post-Cursor	Pre-Cursor
		Equalization	Equalization
0	0000b	0dB (No Equalization)	0dB (No Equalization)
1	0001b	1 dB	0.5 dB
2	0010b	2 dB	1.0 dB
3	0011b	3 dB	1.5 dB
4	0100b	4 dB	2.0 dB
5	0101b	5 dB	2.5 dB
6	0110b	6 dB	3.0 dB
7	0111b	7 dB	3.5 dB
8-10	1000b-1010b	Reserved	Reserved
11-15	1011b-1111b	Custom	Custom

RX Output Amplitude

RX output amplitude follows CMIS Table 6-8, Rx output amplitude is the difference peak-to- peak EYE high when Rx output equalization is set to 0dB. The default value of output amplitude is set to 2, with typical differential 600mVp-p.

Code Value	Bit pattern	Output Amplitude
0	0000b	100-400 mV (P-P)
1	0001b	300-600 mV (P-P)
2	0010b	400-800 mV (P-P)
3	0011b	600-1200 mV (P-P)
4-14	0100b-1110b	Reserved
15	1111b	Custom

Loopback Capabilities -

Media side input loopback and Host side input loopback feature are supported, loopback control method refers to CMIS.

Byte	Bits	Field Name	Field Description
	6	Simultaneous Host And Media Side loopbacks	0b: not supported
	5	Per Lane Media Side Loopbacks	1b: supported
	4	Per Lane Host Side Loopbacks	1b: supported
13h:128	3	Host Side Input Loopback	1b: supported
	2	Host Side Output Loopback	1b: supported
	1	Media Side Input Loopback	1b: supported
	0	Media Side Output Loopback	1b: supported

Specifications -

Absolute Maximum Ratings

	Parameter	Symbol	Min.	Max.	Unit	
	Storage Temperature	Ts	-40	85	°C	
	Case Operating Temperature	Тор	0	70	°C	
	Relative Humidity (non-condensation)	RH	15	85	%	
	Supply Voltage	Vcc	-0.5	3.6	V	
	Receiver Damage Threshold, per Lane	PRdmg	5		dBm	
Rec	ommended Operating Conditions					
	Parameter	Symbol	Min.	Max.	Unit	Notes
	Operating Case Temperature	Тор	0	70	°C	Operating Case Temperature
	Relative Humidity(non-condensing)	RH	15	85	%	Relative Humidity(non- condensing)
	Power Supply Voltage	Vcc	3.135	3.465	V	Power Supply Voltage
	Total Power Consumption	Рс	-	14	W	Total Power Consumption
	Supply Current per End			4.465	А	Supply Current per end
	Bit Rate	BR		850	Gbps	Bit Rate
	Fiber Length on OM3 MMF			30	m	Fiber Length on OM3 MMF
	Fiber Length on OM4 MMF			50	m	Fiber Length on OM4 MMF
	I2C Clock Frequency	0		400	kHz	I2C Clock Frequency

Notes:

1. Under condition of 3.465V operating supply voltage, and 70°C case temperature.

Optical Transmitter

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Data Rate per Lane	DR		53.125		GBd	
Modulation Format		PAM4				
Center Wavelength 1	λ	840	860	868	nm	
RMS Spectral Width	σ			0.6	nm	
Average Launch Power, each lane	Pavg	-4.6		4	dBm	
Optical Power OMA, each Lane , max	Рома		3.5		dBm	
OMAouter, each Lane Min	Рома	, max [-2.6	max(TECQ,TE	, -	dBm	3
Transmitter and Dispersion Eye Closure (TDECQ), each Lane	TDECQ			4.4	dB	
Transmitter Eye Closure for PAM4 (TECQ), each Lane	TECQ			4.4	dB	
Extinction Ratio	ER	2.5			dB	
Transmitter Power Excursion, each Lane				2.3	dBm	
Optical Return Loss Tolerance	ORLT			14	dB	
Optical Power for TX DISABLE				-30	dBm	

Parameter	Symbol Min	Тур	Max	Unit
Encircled Fluxb2	≥86% at ≤30% at			
Notes:				

Notes:

- Defined according to the performance of the laser used. 1.
- Measured into type A1a.2 or type A1a.3, or A1a.4, 50 um fiber, in accordance with IEC 61280-1-4. 2.
- Max (TECQ, TDECQ) <1.8 dB and 1.8 < max (TECQ, TDECQ) < 4.4 dB 3.

Optical Receiver					
Parameter	Symbol	Min.	Тур.	Max.	Unit
Data Rate per Lane	BR		53.125		Gbd
Modulation Format		PAM4			
Center Wavelength	λ	842	850	948	nm
Damage Threshold		5			dBm
Average Receive Power, each Lane		-6.4		4	dBm
Receive Power, each Lane (OMAouter)				3.5	dBm
Receiver Reflectance	Rr			- 15	dB
Receiver Sensitivity, each Lane1		RS = max	(-4.6 <i>,</i> TECC	Q - 6.4)	dBm
Stressed Receiver Sensitivity, each Lane				-2	dBm
Rx LOS	Assert	-15			dBm
	De-assert			-7.5	dBm
	Hysteresis	0.5		5	dB

Notes:

1. Receiver sensitivity is informative and is defined for a transmitter with a value of TECQ. Measured with conformance test signal at TP3 for BER = 2.4E-4 Pre-FEC.

Electrical Specification				
Parameter Pre FEC Bit Error Ratio	Min.	Тур.	Max. 2.4E-4	Unit
Post FEC Bit Error Ratio			1E-12	
Transmitter (each Lane)				
Differential Pk-Pk Input Voltage tolerance	750			mV
Differential Termination Mismatch			10	%
Eye Height	10			mV
Common-Mode to Differential-Mode Return Loss	IEEE802	2.3ck Equation	on (120G-1)	dB
Vertical Eye Closure				dB
Effective Return Loss	7.3			dB
Transition Time	10			ps
Receiver (each Lane)				
Differential Data Output Swing	300		900	mVpp
Differential Termination Mismatch			10	%
Eye Height	15			mV
Vertical Eye Closure			12	dB
Common-Mode to Differential-Mode Return Loss	IEEE802	2.3ck Equation	on (120G-1)	
Effective Return Loss	8.5			dB
Transition Time	8.5			ps
Laser Safety				

Laser Safety

The OSFP-800G-SR8D-01 are Class 1 Laser products according to FDA/CDRH, IEC-60825-1 and IEC60825-2 standards. They must be operated under the specified operating conditions

Electromagnetic Compatibility

The OSFP-800G-SR8D-01 are designed to meet FCC Class B limits.

Ordering Information –

Product Name

OSFP-800G-SR8D-01

Product Description

OSFP 800GBASE-SR8 twin port transceiver, 800Gbps, 2xNDR, 2xMPO12 APC, 850nm MMF, up to 50m, finned

Contact Information

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai, CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

Hong Kong SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, Hong Kong SAR Phone: +852-2851 4722

USA

2710 Thomes Ave Cheyenne, WY 82001, USA Phone: + 1 203 350 9822

VIETNAM

11th Floor, Hoa Binh Office Tower 106 Hoang Quoc Viet Street, Nghia Do Ward Cau Giay District, Hanoi 10649, VIETNAM Phone: +84-24-37955917

WEB: www.ascentcomtec.com

EMAIL: sales@ascentcomtec.com

Specifications and product availability are subject to change without notice. Copyright © 2024 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_OSFP-800G-SR8D-01_Datasheet_V1d_Aug_2022