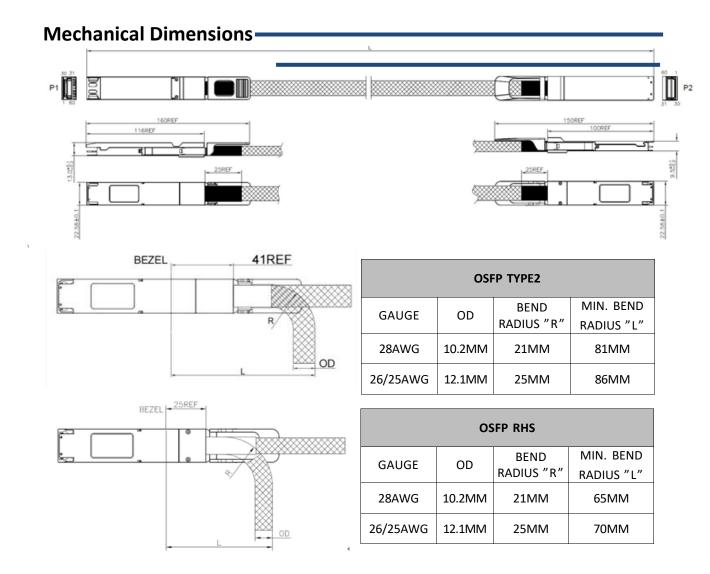


800G Twin-port 2x400G OSFP Passive DAC Cable

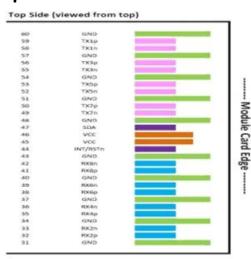
800G OSFP Cable Series

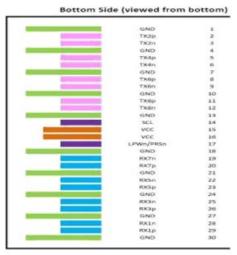
- Compliant to OSFP MSA
- Transmission data rate up to PAM4 106.25Gbps per channel
- Enable 800Gb/s Transmission
- Link length up to 3m
- Built-in EEPROM functions
- Operating case temperature0°C to +70°C
- RoHS2.0 compliant

800G OSFP DAC (Passive Direct Attach Copper) enables high-bandwidth 800G links and supports 800G Ethernet rate. It provides an OSFP copper direct-attach solution. This cable is compliant with OSFP MSA (Multi-Source Agreement), IEEE 802.3ck and 400GBase-CR4 standards. This direct attach copper twinax cable is suitable for short-distance connectivity within a rack or between adjacent racks in data centers.


The 800G OSFP DAC cable contains 16 (8 transmitting and 8 receiving) high-speed copper pairs, each operating at data rates of up to 106.25Gb/s, which are suitable for very short links and offer a cost-effective and power-efficient way to establish a 800-Gigabit link between OSFP ports of switches/routers within racks and across adjacent racks.

The 800G OSFP DAC assembly is high-speed, cost-effective alternatives to OSFP optical modules in 800G Ethernet applications. It meets OSFP800 MSA, IEE802.3ck, 400GBase-CR4 standards. These high performance 800G OSFP-to-OSFP copper direct-attach cables are offered in lengths of 1, 1.5, and 2 meters.


Key Features -


- OSFP Module compliant to OSFP MSA
- Transmission data rate up to PAM4 106.25Gbps per channel
- Enable 800Gb/s Transmission
- Link length up to 3m
- Built-in EEPROM functions
- Operating case temperature 0°C to +70°C
- RoHS2.0 compliant

Pin Description -

F	Pin	Symbol	Description	Logic	Direction	Plug Sequence	Notes
1		GND	Ground			1	
2	2	TX2p	Transmitter Data Non- Inverted	CML-I	Input from Host	3	
3	3	TX2n	Transmitter Data Inverted	CML-I	Input from Host	3	
4	1	GND	Ground			1	
5	5	TX4p	Transmitter Data Non- Inverted	CML-I	Input from Host	3	
E	5	TX4n	Transmitter Data Inverted	CML-I	Input from Host	3	
7	7	GND	Ground			1	
8	3	ТХ6р	Transmitter Data Non- Inverted	CML-I	Input from Host	3	
ç	9	TX6n	Transmitter Data Inverted	CML-I	Input from Host	3	
1	LO	GND	Ground			1	
1	11	TX8p	Transmitter Data Non- Inverted	CML-I	Input from Host	3	
1	12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3	
1	13	GND	Ground			1	
1	L4	SCL	2-wire Serial interface clock	LVCMOS- I/O	Bi-directional	3	
1	15	VCC	+3.3V Power		Power from Host	2	
1	16	VCC	+3.3V Power		Power from Host	2	
1	L7	LPWn/PRSn	Low-Power Mode/ Module Present	Multi- Level	Bi-directional	3	
1	18	GND	Ground			1	
1	19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3	
2	20	RX7p	Receiver Data Non- Inverted	CML-O	Output to Host	3	
	21	GND	Ground			1	
2	22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3	
2	23	RX5p	Receiver Data Non- Inverted	CML-O	Output to Host	3	
2	24	GND	Ground			1	

25 26	RX3n RX3p	Receiver Data Inverted Receiver Data Non-	CML-O CML-O	Output to Host Output to Host	3 3
	·	Inverted	CIVIL-O	Output to Host	
27	GND	Ground			1
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3
29	RX1p	Receiver Data Non- Inverted	CML-O	Output to Host	3
30	GND	Ground			1
31	GND	Ground			1
32	RX2p	Receiver Data Non- Inverted	CML-O	Output to Host	3
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3
34	GND	Ground			1
35	RX4p	Receiver Data Non- Inverted	CML-O	Output to Host	3
36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3
37	GND	Ground			1
38	RX6p	Receiver Data Non- Inverted	CML-O	Output to Host	3
39	RX6n	Receiver Data Inverted	CML-O	Output to Host	3
40	GND	Ground			1
41	RX8p	Receiver Data Non- Inverted	CML-O	Output to Host	3
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3
43	GND	Ground			1
44	INT/RSTn	Module Interrupt / Module Reset	Multi- Level	Bi-directional	3
45	VCC	+3.3V Power		Power from Host	2
46	VCC	+3.3V Power		Power from Host	2
47	SDA	2-wire Serial interface data	LVCMOS- I/O	Bi-directional	3
48	GND	Ground			1
49	TX7n	Transmitter Data Inverted	CML-I	Input from Host	3
50	TX7p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
51	GND	Ground			1
52	TX5n	Transmitter Data Inverted	CML-I	Input from Host	3
53	TX5p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
54	GND	Ground			1
55	TX3n	Transmitter Data Inverted	CML-I	Input from Host	3
56	TX3p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
57	GND	Ground			1
58	TX1n	Transmitter Data Inverted	CML-I	Input from Host	3
59	TX1p	Transmitter Data Non- Inverted	CML-I	Input from Host	3
60	GND	Ground			1
_					

Module Memory Map —

Compatible with CMIS rev 5.0 or further CMIS revisions and customer spec

Specifications —

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	V_{cc}	3.13	3.3	3.47	V
Storage temperature	T_s	-40		85	°C
Operating Case temperature	T_c	0		70	°C
Humidity	Rh	5		85	%
Data Rate			800		Gbps

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Length	L	0.5		3.0	M
AWG		28		25	AWG
Jacket material	Hair Tail Ted	hnology Net,	Gray		

Electrical Characteristics

Parameter	Symbol	Min. Typ.	Max.	Unit
Resistance	Rcon		3	ohm
Insulation Resistance	Rins		10	Mohm
Raw cable impedance	Zca	95	110	ohm
Mated connector Impedance	Zmated	85	110	ohm
	SDD21	11	18 1.5M	
Maximum insertion Loss at 26.56 GHz			19.75 2.0M	dB
		0.5	25.3 3.0M	
Differential to common-mode return loss	SCD11/22		$f/26.56$) $0.05 \le f < 26.56$ $f/26.56$) $26.56 \le f \le 40$ HO GHz, Where f is the Hz	dB e
Differential to common-mode conversion loss	SCD21- SDD21	For 0.05 =f =4 frequency in G	$0 \ge \begin{cases} 10 & 0.05 \le f < 12.89 \\ 14 - 0.3108f & 12.89 \le f \le 40 \end{cases}$ 10 GHz, Where f is th	dB
Common-mode to common-mode return loss	SCC11/22	RLCC ≥18 For 0.05 =f =4 frequency in G	10 GHz, Where f is th	e dB
Minimum COM	COM	3		dB

Ordering Information -

Product Name	Product Description
OSFP-800G-DAC01	800G OSFP Passive Direct Attach Copper Cable, IB twin port NDR, 1m (3ft),
	28AWG, Flat top to Finned top
OSFP-800G-DAC02	800G OSFP Passive Direct Attach Copper Cable, IB twin port NDR, 2m (6ft),
	28AWG, Flat top to Finned top

Contact Information -

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai, CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

WEB: <u>www.ascentcomtec.com</u>

Hong Kong SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, Hong Kong SAR Phone: +852-2851 4722

USA

2710 Thomes Ave Cheyenne, WY 82001, USA Phone: +1-203 816 5188

VIETNAM

11th Floor, Hoa Binh Office Tower 106 Hoang Quoc Viet Street, Nghia Do Ward Cau Giay District, Hanoi 10649, VIETNAM

Phone: +84-24-37955917

EMAIL: sales@ascentcomtec.com

Specifications and product availability are subject to change without notice. Copyright © 2024 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_OSFP-800G-DAC02_Datasheet_V1a_Dec_2023